Step |
Hyp |
Ref |
Expression |
1 |
|
psmeasure.x |
|
2 |
|
psmeasure.h |
|
3 |
|
psmeasure.m |
|
4 |
|
simpr |
|
5 |
2
|
adantr |
|
6 |
4
|
elpwid |
|
7 |
|
fssres |
|
8 |
5 6 7
|
syl2anc |
|
9 |
4 8
|
sge0cl |
|
10 |
9 3
|
fmptd |
|
11 |
3 9
|
dmmptd |
|
12 |
11
|
feq2d |
|
13 |
10 12
|
mpbird |
|
14 |
|
pwsal |
|
15 |
1 14
|
syl |
|
16 |
11 15
|
eqeltrd |
|
17 |
13 16
|
jca |
|
18 |
|
reseq2 |
|
19 |
18
|
fveq2d |
|
20 |
|
0elpw |
|
21 |
20
|
a1i |
|
22 |
|
fvexd |
|
23 |
3 19 21 22
|
fvmptd3 |
|
24 |
|
res0 |
|
25 |
24
|
fveq2i |
|
26 |
|
sge00 |
|
27 |
25 26
|
eqtri |
|
28 |
27
|
a1i |
|
29 |
23 28
|
eqtrd |
|
30 |
|
simpl |
|
31 |
|
simpr |
|
32 |
11
|
pweqd |
|
33 |
32
|
adantr |
|
34 |
31 33
|
eleqtrd |
|
35 |
|
elpwi |
|
36 |
34 35
|
syl |
|
37 |
1
|
ad2antrr |
|
38 |
2
|
ad2antrr |
|
39 |
10
|
ad2antrr |
|
40 |
|
simplr |
|
41 |
|
id |
|
42 |
41
|
cbvdisjv |
|
43 |
42
|
biimpi |
|
44 |
43
|
adantl |
|
45 |
37 38 3 39 40 44
|
psmeasurelem |
|
46 |
45
|
adantrl |
|
47 |
46
|
ex |
|
48 |
30 36 47
|
syl2anc |
|
49 |
48
|
ralrimiva |
|
50 |
17 29 49
|
jca31 |
|
51 |
|
ismea |
|
52 |
50 51
|
sylibr |
|