| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
| 2 |
|
oveq2 |
|- ( x = 1 -> ( A ^r x ) = ( A ^r 1 ) ) |
| 3 |
2
|
oveq1d |
|- ( x = 1 -> ( ( A ^r x ) ^r 0 ) = ( ( A ^r 1 ) ^r 0 ) ) |
| 4 |
3
|
sseq1d |
|- ( x = 1 -> ( ( ( A ^r x ) ^r 0 ) C_ ( A ^r 0 ) <-> ( ( A ^r 1 ) ^r 0 ) C_ ( A ^r 0 ) ) ) |
| 5 |
4
|
imbi2d |
|- ( x = 1 -> ( ( A e. V -> ( ( A ^r x ) ^r 0 ) C_ ( A ^r 0 ) ) <-> ( A e. V -> ( ( A ^r 1 ) ^r 0 ) C_ ( A ^r 0 ) ) ) ) |
| 6 |
|
oveq2 |
|- ( x = y -> ( A ^r x ) = ( A ^r y ) ) |
| 7 |
6
|
oveq1d |
|- ( x = y -> ( ( A ^r x ) ^r 0 ) = ( ( A ^r y ) ^r 0 ) ) |
| 8 |
7
|
sseq1d |
|- ( x = y -> ( ( ( A ^r x ) ^r 0 ) C_ ( A ^r 0 ) <-> ( ( A ^r y ) ^r 0 ) C_ ( A ^r 0 ) ) ) |
| 9 |
8
|
imbi2d |
|- ( x = y -> ( ( A e. V -> ( ( A ^r x ) ^r 0 ) C_ ( A ^r 0 ) ) <-> ( A e. V -> ( ( A ^r y ) ^r 0 ) C_ ( A ^r 0 ) ) ) ) |
| 10 |
|
oveq2 |
|- ( x = ( y + 1 ) -> ( A ^r x ) = ( A ^r ( y + 1 ) ) ) |
| 11 |
10
|
oveq1d |
|- ( x = ( y + 1 ) -> ( ( A ^r x ) ^r 0 ) = ( ( A ^r ( y + 1 ) ) ^r 0 ) ) |
| 12 |
11
|
sseq1d |
|- ( x = ( y + 1 ) -> ( ( ( A ^r x ) ^r 0 ) C_ ( A ^r 0 ) <-> ( ( A ^r ( y + 1 ) ) ^r 0 ) C_ ( A ^r 0 ) ) ) |
| 13 |
12
|
imbi2d |
|- ( x = ( y + 1 ) -> ( ( A e. V -> ( ( A ^r x ) ^r 0 ) C_ ( A ^r 0 ) ) <-> ( A e. V -> ( ( A ^r ( y + 1 ) ) ^r 0 ) C_ ( A ^r 0 ) ) ) ) |
| 14 |
|
oveq2 |
|- ( x = N -> ( A ^r x ) = ( A ^r N ) ) |
| 15 |
14
|
oveq1d |
|- ( x = N -> ( ( A ^r x ) ^r 0 ) = ( ( A ^r N ) ^r 0 ) ) |
| 16 |
15
|
sseq1d |
|- ( x = N -> ( ( ( A ^r x ) ^r 0 ) C_ ( A ^r 0 ) <-> ( ( A ^r N ) ^r 0 ) C_ ( A ^r 0 ) ) ) |
| 17 |
16
|
imbi2d |
|- ( x = N -> ( ( A e. V -> ( ( A ^r x ) ^r 0 ) C_ ( A ^r 0 ) ) <-> ( A e. V -> ( ( A ^r N ) ^r 0 ) C_ ( A ^r 0 ) ) ) ) |
| 18 |
|
relexp1g |
|- ( A e. V -> ( A ^r 1 ) = A ) |
| 19 |
18
|
oveq1d |
|- ( A e. V -> ( ( A ^r 1 ) ^r 0 ) = ( A ^r 0 ) ) |
| 20 |
|
ssid |
|- ( A ^r 0 ) C_ ( A ^r 0 ) |
| 21 |
19 20
|
eqsstrdi |
|- ( A e. V -> ( ( A ^r 1 ) ^r 0 ) C_ ( A ^r 0 ) ) |
| 22 |
|
simp2 |
|- ( ( y e. NN /\ A e. V /\ ( ( A ^r y ) ^r 0 ) C_ ( A ^r 0 ) ) -> A e. V ) |
| 23 |
|
simp1 |
|- ( ( y e. NN /\ A e. V /\ ( ( A ^r y ) ^r 0 ) C_ ( A ^r 0 ) ) -> y e. NN ) |
| 24 |
|
relexpsucnnr |
|- ( ( A e. V /\ y e. NN ) -> ( A ^r ( y + 1 ) ) = ( ( A ^r y ) o. A ) ) |
| 25 |
24
|
oveq1d |
|- ( ( A e. V /\ y e. NN ) -> ( ( A ^r ( y + 1 ) ) ^r 0 ) = ( ( ( A ^r y ) o. A ) ^r 0 ) ) |
| 26 |
22 23 25
|
syl2anc |
|- ( ( y e. NN /\ A e. V /\ ( ( A ^r y ) ^r 0 ) C_ ( A ^r 0 ) ) -> ( ( A ^r ( y + 1 ) ) ^r 0 ) = ( ( ( A ^r y ) o. A ) ^r 0 ) ) |
| 27 |
|
ovex |
|- ( A ^r y ) e. _V |
| 28 |
|
coexg |
|- ( ( ( A ^r y ) e. _V /\ A e. V ) -> ( ( A ^r y ) o. A ) e. _V ) |
| 29 |
27 28
|
mpan |
|- ( A e. V -> ( ( A ^r y ) o. A ) e. _V ) |
| 30 |
|
relexp0g |
|- ( ( ( A ^r y ) o. A ) e. _V -> ( ( ( A ^r y ) o. A ) ^r 0 ) = ( _I |` ( dom ( ( A ^r y ) o. A ) u. ran ( ( A ^r y ) o. A ) ) ) ) |
| 31 |
29 30
|
syl |
|- ( A e. V -> ( ( ( A ^r y ) o. A ) ^r 0 ) = ( _I |` ( dom ( ( A ^r y ) o. A ) u. ran ( ( A ^r y ) o. A ) ) ) ) |
| 32 |
|
dmcoss |
|- dom ( ( A ^r y ) o. A ) C_ dom A |
| 33 |
|
rncoss |
|- ran ( ( A ^r y ) o. A ) C_ ran ( A ^r y ) |
| 34 |
|
unss12 |
|- ( ( dom ( ( A ^r y ) o. A ) C_ dom A /\ ran ( ( A ^r y ) o. A ) C_ ran ( A ^r y ) ) -> ( dom ( ( A ^r y ) o. A ) u. ran ( ( A ^r y ) o. A ) ) C_ ( dom A u. ran ( A ^r y ) ) ) |
| 35 |
32 33 34
|
mp2an |
|- ( dom ( ( A ^r y ) o. A ) u. ran ( ( A ^r y ) o. A ) ) C_ ( dom A u. ran ( A ^r y ) ) |
| 36 |
|
ssres2 |
|- ( ( dom ( ( A ^r y ) o. A ) u. ran ( ( A ^r y ) o. A ) ) C_ ( dom A u. ran ( A ^r y ) ) -> ( _I |` ( dom ( ( A ^r y ) o. A ) u. ran ( ( A ^r y ) o. A ) ) ) C_ ( _I |` ( dom A u. ran ( A ^r y ) ) ) ) |
| 37 |
35 36
|
ax-mp |
|- ( _I |` ( dom ( ( A ^r y ) o. A ) u. ran ( ( A ^r y ) o. A ) ) ) C_ ( _I |` ( dom A u. ran ( A ^r y ) ) ) |
| 38 |
31 37
|
eqsstrdi |
|- ( A e. V -> ( ( ( A ^r y ) o. A ) ^r 0 ) C_ ( _I |` ( dom A u. ran ( A ^r y ) ) ) ) |
| 39 |
22 38
|
syl |
|- ( ( y e. NN /\ A e. V /\ ( ( A ^r y ) ^r 0 ) C_ ( A ^r 0 ) ) -> ( ( ( A ^r y ) o. A ) ^r 0 ) C_ ( _I |` ( dom A u. ran ( A ^r y ) ) ) ) |
| 40 |
|
resundi |
|- ( _I |` ( dom A u. ran ( A ^r y ) ) ) = ( ( _I |` dom A ) u. ( _I |` ran ( A ^r y ) ) ) |
| 41 |
|
ssun1 |
|- dom A C_ ( dom A u. ran A ) |
| 42 |
|
ssres2 |
|- ( dom A C_ ( dom A u. ran A ) -> ( _I |` dom A ) C_ ( _I |` ( dom A u. ran A ) ) ) |
| 43 |
41 42
|
ax-mp |
|- ( _I |` dom A ) C_ ( _I |` ( dom A u. ran A ) ) |
| 44 |
|
relexp0g |
|- ( A e. V -> ( A ^r 0 ) = ( _I |` ( dom A u. ran A ) ) ) |
| 45 |
43 44
|
sseqtrrid |
|- ( A e. V -> ( _I |` dom A ) C_ ( A ^r 0 ) ) |
| 46 |
45
|
adantr |
|- ( ( A e. V /\ ( ( A ^r y ) ^r 0 ) C_ ( A ^r 0 ) ) -> ( _I |` dom A ) C_ ( A ^r 0 ) ) |
| 47 |
|
ssun2 |
|- ran ( A ^r y ) C_ ( dom ( A ^r y ) u. ran ( A ^r y ) ) |
| 48 |
|
ssres2 |
|- ( ran ( A ^r y ) C_ ( dom ( A ^r y ) u. ran ( A ^r y ) ) -> ( _I |` ran ( A ^r y ) ) C_ ( _I |` ( dom ( A ^r y ) u. ran ( A ^r y ) ) ) ) |
| 49 |
47 48
|
ax-mp |
|- ( _I |` ran ( A ^r y ) ) C_ ( _I |` ( dom ( A ^r y ) u. ran ( A ^r y ) ) ) |
| 50 |
|
relexp0g |
|- ( ( A ^r y ) e. _V -> ( ( A ^r y ) ^r 0 ) = ( _I |` ( dom ( A ^r y ) u. ran ( A ^r y ) ) ) ) |
| 51 |
27 50
|
ax-mp |
|- ( ( A ^r y ) ^r 0 ) = ( _I |` ( dom ( A ^r y ) u. ran ( A ^r y ) ) ) |
| 52 |
49 51
|
sseqtrri |
|- ( _I |` ran ( A ^r y ) ) C_ ( ( A ^r y ) ^r 0 ) |
| 53 |
|
simpr |
|- ( ( A e. V /\ ( ( A ^r y ) ^r 0 ) C_ ( A ^r 0 ) ) -> ( ( A ^r y ) ^r 0 ) C_ ( A ^r 0 ) ) |
| 54 |
52 53
|
sstrid |
|- ( ( A e. V /\ ( ( A ^r y ) ^r 0 ) C_ ( A ^r 0 ) ) -> ( _I |` ran ( A ^r y ) ) C_ ( A ^r 0 ) ) |
| 55 |
46 54
|
unssd |
|- ( ( A e. V /\ ( ( A ^r y ) ^r 0 ) C_ ( A ^r 0 ) ) -> ( ( _I |` dom A ) u. ( _I |` ran ( A ^r y ) ) ) C_ ( A ^r 0 ) ) |
| 56 |
40 55
|
eqsstrid |
|- ( ( A e. V /\ ( ( A ^r y ) ^r 0 ) C_ ( A ^r 0 ) ) -> ( _I |` ( dom A u. ran ( A ^r y ) ) ) C_ ( A ^r 0 ) ) |
| 57 |
56
|
3adant1 |
|- ( ( y e. NN /\ A e. V /\ ( ( A ^r y ) ^r 0 ) C_ ( A ^r 0 ) ) -> ( _I |` ( dom A u. ran ( A ^r y ) ) ) C_ ( A ^r 0 ) ) |
| 58 |
39 57
|
sstrd |
|- ( ( y e. NN /\ A e. V /\ ( ( A ^r y ) ^r 0 ) C_ ( A ^r 0 ) ) -> ( ( ( A ^r y ) o. A ) ^r 0 ) C_ ( A ^r 0 ) ) |
| 59 |
26 58
|
eqsstrd |
|- ( ( y e. NN /\ A e. V /\ ( ( A ^r y ) ^r 0 ) C_ ( A ^r 0 ) ) -> ( ( A ^r ( y + 1 ) ) ^r 0 ) C_ ( A ^r 0 ) ) |
| 60 |
59
|
3exp |
|- ( y e. NN -> ( A e. V -> ( ( ( A ^r y ) ^r 0 ) C_ ( A ^r 0 ) -> ( ( A ^r ( y + 1 ) ) ^r 0 ) C_ ( A ^r 0 ) ) ) ) |
| 61 |
60
|
a2d |
|- ( y e. NN -> ( ( A e. V -> ( ( A ^r y ) ^r 0 ) C_ ( A ^r 0 ) ) -> ( A e. V -> ( ( A ^r ( y + 1 ) ) ^r 0 ) C_ ( A ^r 0 ) ) ) ) |
| 62 |
5 9 13 17 21 61
|
nnind |
|- ( N e. NN -> ( A e. V -> ( ( A ^r N ) ^r 0 ) C_ ( A ^r 0 ) ) ) |
| 63 |
|
oveq2 |
|- ( N = 0 -> ( A ^r N ) = ( A ^r 0 ) ) |
| 64 |
63
|
oveq1d |
|- ( N = 0 -> ( ( A ^r N ) ^r 0 ) = ( ( A ^r 0 ) ^r 0 ) ) |
| 65 |
|
relexp0idm |
|- ( A e. V -> ( ( A ^r 0 ) ^r 0 ) = ( A ^r 0 ) ) |
| 66 |
64 65
|
sylan9eq |
|- ( ( N = 0 /\ A e. V ) -> ( ( A ^r N ) ^r 0 ) = ( A ^r 0 ) ) |
| 67 |
|
eqimss |
|- ( ( ( A ^r N ) ^r 0 ) = ( A ^r 0 ) -> ( ( A ^r N ) ^r 0 ) C_ ( A ^r 0 ) ) |
| 68 |
66 67
|
syl |
|- ( ( N = 0 /\ A e. V ) -> ( ( A ^r N ) ^r 0 ) C_ ( A ^r 0 ) ) |
| 69 |
68
|
ex |
|- ( N = 0 -> ( A e. V -> ( ( A ^r N ) ^r 0 ) C_ ( A ^r 0 ) ) ) |
| 70 |
62 69
|
jaoi |
|- ( ( N e. NN \/ N = 0 ) -> ( A e. V -> ( ( A ^r N ) ^r 0 ) C_ ( A ^r 0 ) ) ) |
| 71 |
1 70
|
sylbi |
|- ( N e. NN0 -> ( A e. V -> ( ( A ^r N ) ^r 0 ) C_ ( A ^r 0 ) ) ) |
| 72 |
71
|
impcom |
|- ( ( A e. V /\ N e. NN0 ) -> ( ( A ^r N ) ^r 0 ) C_ ( A ^r 0 ) ) |