Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
|- ( K e. NN0 <-> ( K e. NN \/ K = 0 ) ) |
2 |
|
elnn0 |
|- ( J e. NN0 <-> ( J e. NN \/ J = 0 ) ) |
3 |
|
ifeqor |
|- ( if ( J < K , J , K ) = J \/ if ( J < K , J , K ) = K ) |
4 |
|
andi |
|- ( ( I = if ( J < K , J , K ) /\ ( if ( J < K , J , K ) = J \/ if ( J < K , J , K ) = K ) ) <-> ( ( I = if ( J < K , J , K ) /\ if ( J < K , J , K ) = J ) \/ ( I = if ( J < K , J , K ) /\ if ( J < K , J , K ) = K ) ) ) |
5 |
4
|
biimpi |
|- ( ( I = if ( J < K , J , K ) /\ ( if ( J < K , J , K ) = J \/ if ( J < K , J , K ) = K ) ) -> ( ( I = if ( J < K , J , K ) /\ if ( J < K , J , K ) = J ) \/ ( I = if ( J < K , J , K ) /\ if ( J < K , J , K ) = K ) ) ) |
6 |
3 5
|
mpan2 |
|- ( I = if ( J < K , J , K ) -> ( ( I = if ( J < K , J , K ) /\ if ( J < K , J , K ) = J ) \/ ( I = if ( J < K , J , K ) /\ if ( J < K , J , K ) = K ) ) ) |
7 |
|
eqtr |
|- ( ( I = if ( J < K , J , K ) /\ if ( J < K , J , K ) = J ) -> I = J ) |
8 |
|
eqtr |
|- ( ( I = if ( J < K , J , K ) /\ if ( J < K , J , K ) = K ) -> I = K ) |
9 |
7 8
|
orim12i |
|- ( ( ( I = if ( J < K , J , K ) /\ if ( J < K , J , K ) = J ) \/ ( I = if ( J < K , J , K ) /\ if ( J < K , J , K ) = K ) ) -> ( I = J \/ I = K ) ) |
10 |
|
relexpxpnnidm |
|- ( K e. NN -> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( A X. B ) ^r K ) = ( A X. B ) ) ) |
11 |
10
|
imp |
|- ( ( K e. NN /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( A X. B ) ^r K ) = ( A X. B ) ) |
12 |
11
|
3ad2antl3 |
|- ( ( ( I = J /\ J e. NN /\ K e. NN ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( A X. B ) ^r K ) = ( A X. B ) ) |
13 |
|
relexpxpnnidm |
|- ( J e. NN -> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( A X. B ) ^r J ) = ( A X. B ) ) ) |
14 |
13
|
imp |
|- ( ( J e. NN /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( A X. B ) ^r J ) = ( A X. B ) ) |
15 |
14
|
3ad2antl2 |
|- ( ( ( I = J /\ J e. NN /\ K e. NN ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( A X. B ) ^r J ) = ( A X. B ) ) |
16 |
15
|
oveq1d |
|- ( ( ( I = J /\ J e. NN /\ K e. NN ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( A X. B ) ^r K ) ) |
17 |
|
simpl1 |
|- ( ( ( I = J /\ J e. NN /\ K e. NN ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> I = J ) |
18 |
17
|
oveq2d |
|- ( ( ( I = J /\ J e. NN /\ K e. NN ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( A X. B ) ^r I ) = ( ( A X. B ) ^r J ) ) |
19 |
18 15
|
eqtrd |
|- ( ( ( I = J /\ J e. NN /\ K e. NN ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( A X. B ) ^r I ) = ( A X. B ) ) |
20 |
12 16 19
|
3eqtr4d |
|- ( ( ( I = J /\ J e. NN /\ K e. NN ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( A X. B ) ^r I ) ) |
21 |
20
|
3exp1 |
|- ( I = J -> ( J e. NN -> ( K e. NN -> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( A X. B ) ^r I ) ) ) ) ) |
22 |
14
|
3ad2antl2 |
|- ( ( ( I = K /\ J e. NN /\ K e. NN ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( A X. B ) ^r J ) = ( A X. B ) ) |
23 |
|
simpl1 |
|- ( ( ( I = K /\ J e. NN /\ K e. NN ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> I = K ) |
24 |
23
|
eqcomd |
|- ( ( ( I = K /\ J e. NN /\ K e. NN ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> K = I ) |
25 |
22 24
|
oveq12d |
|- ( ( ( I = K /\ J e. NN /\ K e. NN ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( A X. B ) ^r I ) ) |
26 |
25
|
3exp1 |
|- ( I = K -> ( J e. NN -> ( K e. NN -> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( A X. B ) ^r I ) ) ) ) ) |
27 |
21 26
|
jaoi |
|- ( ( I = J \/ I = K ) -> ( J e. NN -> ( K e. NN -> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( A X. B ) ^r I ) ) ) ) ) |
28 |
6 9 27
|
3syl |
|- ( I = if ( J < K , J , K ) -> ( J e. NN -> ( K e. NN -> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( A X. B ) ^r I ) ) ) ) ) |
29 |
28
|
com13 |
|- ( K e. NN -> ( J e. NN -> ( I = if ( J < K , J , K ) -> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( A X. B ) ^r I ) ) ) ) ) |
30 |
|
simp3 |
|- ( ( K e. NN /\ J = 0 /\ I = if ( J < K , J , K ) ) -> I = if ( J < K , J , K ) ) |
31 |
|
simp2 |
|- ( ( K e. NN /\ J = 0 /\ I = if ( J < K , J , K ) ) -> J = 0 ) |
32 |
|
simp1 |
|- ( ( K e. NN /\ J = 0 /\ I = if ( J < K , J , K ) ) -> K e. NN ) |
33 |
32
|
nngt0d |
|- ( ( K e. NN /\ J = 0 /\ I = if ( J < K , J , K ) ) -> 0 < K ) |
34 |
31 33
|
eqbrtrd |
|- ( ( K e. NN /\ J = 0 /\ I = if ( J < K , J , K ) ) -> J < K ) |
35 |
34
|
iftrued |
|- ( ( K e. NN /\ J = 0 /\ I = if ( J < K , J , K ) ) -> if ( J < K , J , K ) = J ) |
36 |
30 35 31
|
3eqtrd |
|- ( ( K e. NN /\ J = 0 /\ I = if ( J < K , J , K ) ) -> I = 0 ) |
37 |
|
simpr1 |
|- ( ( ( K e. NN /\ J = 0 /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> A e. U ) |
38 |
|
simpr2 |
|- ( ( ( K e. NN /\ J = 0 /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> B e. V ) |
39 |
37 38
|
xpexd |
|- ( ( ( K e. NN /\ J = 0 /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( A X. B ) e. _V ) |
40 |
|
dmexg |
|- ( ( A X. B ) e. _V -> dom ( A X. B ) e. _V ) |
41 |
|
rnexg |
|- ( ( A X. B ) e. _V -> ran ( A X. B ) e. _V ) |
42 |
40 41
|
jca |
|- ( ( A X. B ) e. _V -> ( dom ( A X. B ) e. _V /\ ran ( A X. B ) e. _V ) ) |
43 |
|
unexg |
|- ( ( dom ( A X. B ) e. _V /\ ran ( A X. B ) e. _V ) -> ( dom ( A X. B ) u. ran ( A X. B ) ) e. _V ) |
44 |
39 42 43
|
3syl |
|- ( ( ( K e. NN /\ J = 0 /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( dom ( A X. B ) u. ran ( A X. B ) ) e. _V ) |
45 |
|
simpl1 |
|- ( ( ( K e. NN /\ J = 0 /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> K e. NN ) |
46 |
45
|
nnnn0d |
|- ( ( ( K e. NN /\ J = 0 /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> K e. NN0 ) |
47 |
|
relexpiidm |
|- ( ( ( dom ( A X. B ) u. ran ( A X. B ) ) e. _V /\ K e. NN0 ) -> ( ( _I |` ( dom ( A X. B ) u. ran ( A X. B ) ) ) ^r K ) = ( _I |` ( dom ( A X. B ) u. ran ( A X. B ) ) ) ) |
48 |
44 46 47
|
syl2anc |
|- ( ( ( K e. NN /\ J = 0 /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( _I |` ( dom ( A X. B ) u. ran ( A X. B ) ) ) ^r K ) = ( _I |` ( dom ( A X. B ) u. ran ( A X. B ) ) ) ) |
49 |
|
simpl2 |
|- ( ( ( K e. NN /\ J = 0 /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> J = 0 ) |
50 |
49
|
oveq2d |
|- ( ( ( K e. NN /\ J = 0 /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( A X. B ) ^r J ) = ( ( A X. B ) ^r 0 ) ) |
51 |
|
relexp0g |
|- ( ( A X. B ) e. _V -> ( ( A X. B ) ^r 0 ) = ( _I |` ( dom ( A X. B ) u. ran ( A X. B ) ) ) ) |
52 |
39 51
|
syl |
|- ( ( ( K e. NN /\ J = 0 /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( A X. B ) ^r 0 ) = ( _I |` ( dom ( A X. B ) u. ran ( A X. B ) ) ) ) |
53 |
50 52
|
eqtrd |
|- ( ( ( K e. NN /\ J = 0 /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( A X. B ) ^r J ) = ( _I |` ( dom ( A X. B ) u. ran ( A X. B ) ) ) ) |
54 |
53
|
oveq1d |
|- ( ( ( K e. NN /\ J = 0 /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( _I |` ( dom ( A X. B ) u. ran ( A X. B ) ) ) ^r K ) ) |
55 |
|
simpl3 |
|- ( ( ( K e. NN /\ J = 0 /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> I = 0 ) |
56 |
55
|
oveq2d |
|- ( ( ( K e. NN /\ J = 0 /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( A X. B ) ^r I ) = ( ( A X. B ) ^r 0 ) ) |
57 |
56 52
|
eqtrd |
|- ( ( ( K e. NN /\ J = 0 /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( A X. B ) ^r I ) = ( _I |` ( dom ( A X. B ) u. ran ( A X. B ) ) ) ) |
58 |
48 54 57
|
3eqtr4d |
|- ( ( ( K e. NN /\ J = 0 /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( A X. B ) ^r I ) ) |
59 |
58
|
ex |
|- ( ( K e. NN /\ J = 0 /\ I = 0 ) -> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( A X. B ) ^r I ) ) ) |
60 |
36 59
|
syld3an3 |
|- ( ( K e. NN /\ J = 0 /\ I = if ( J < K , J , K ) ) -> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( A X. B ) ^r I ) ) ) |
61 |
60
|
3exp |
|- ( K e. NN -> ( J = 0 -> ( I = if ( J < K , J , K ) -> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( A X. B ) ^r I ) ) ) ) ) |
62 |
29 61
|
jaod |
|- ( K e. NN -> ( ( J e. NN \/ J = 0 ) -> ( I = if ( J < K , J , K ) -> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( A X. B ) ^r I ) ) ) ) ) |
63 |
2 62
|
syl5bi |
|- ( K e. NN -> ( J e. NN0 -> ( I = if ( J < K , J , K ) -> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( A X. B ) ^r I ) ) ) ) ) |
64 |
|
simp1 |
|- ( ( K = 0 /\ J e. NN0 /\ I = if ( J < K , J , K ) ) -> K = 0 ) |
65 |
2
|
biimpi |
|- ( J e. NN0 -> ( J e. NN \/ J = 0 ) ) |
66 |
65
|
3ad2ant2 |
|- ( ( K = 0 /\ J e. NN0 /\ I = if ( J < K , J , K ) ) -> ( J e. NN \/ J = 0 ) ) |
67 |
|
simp3 |
|- ( ( K = 0 /\ J e. NN0 /\ I = if ( J < K , J , K ) ) -> I = if ( J < K , J , K ) ) |
68 |
|
nn0nlt0 |
|- ( J e. NN0 -> -. J < 0 ) |
69 |
68
|
3ad2ant2 |
|- ( ( K = 0 /\ J e. NN0 /\ I = if ( J < K , J , K ) ) -> -. J < 0 ) |
70 |
64
|
breq2d |
|- ( ( K = 0 /\ J e. NN0 /\ I = if ( J < K , J , K ) ) -> ( J < K <-> J < 0 ) ) |
71 |
69 70
|
mtbird |
|- ( ( K = 0 /\ J e. NN0 /\ I = if ( J < K , J , K ) ) -> -. J < K ) |
72 |
71
|
iffalsed |
|- ( ( K = 0 /\ J e. NN0 /\ I = if ( J < K , J , K ) ) -> if ( J < K , J , K ) = K ) |
73 |
67 72 64
|
3eqtrd |
|- ( ( K = 0 /\ J e. NN0 /\ I = if ( J < K , J , K ) ) -> I = 0 ) |
74 |
13
|
3ad2ant2 |
|- ( ( K = 0 /\ J e. NN /\ I = 0 ) -> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( A X. B ) ^r J ) = ( A X. B ) ) ) |
75 |
74
|
imp |
|- ( ( ( K = 0 /\ J e. NN /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( A X. B ) ^r J ) = ( A X. B ) ) |
76 |
75
|
oveq1d |
|- ( ( ( K = 0 /\ J e. NN /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( ( A X. B ) ^r J ) ^r 0 ) = ( ( A X. B ) ^r 0 ) ) |
77 |
|
simpl1 |
|- ( ( ( K = 0 /\ J e. NN /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> K = 0 ) |
78 |
77
|
oveq2d |
|- ( ( ( K = 0 /\ J e. NN /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( ( A X. B ) ^r J ) ^r 0 ) ) |
79 |
|
simpl3 |
|- ( ( ( K = 0 /\ J e. NN /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> I = 0 ) |
80 |
79
|
oveq2d |
|- ( ( ( K = 0 /\ J e. NN /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( A X. B ) ^r I ) = ( ( A X. B ) ^r 0 ) ) |
81 |
76 78 80
|
3eqtr4d |
|- ( ( ( K = 0 /\ J e. NN /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( A X. B ) ^r I ) ) |
82 |
81
|
3exp1 |
|- ( K = 0 -> ( J e. NN -> ( I = 0 -> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( A X. B ) ^r I ) ) ) ) ) |
83 |
|
simpr1 |
|- ( ( ( K = 0 /\ J = 0 /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> A e. U ) |
84 |
|
simpr2 |
|- ( ( ( K = 0 /\ J = 0 /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> B e. V ) |
85 |
83 84
|
xpexd |
|- ( ( ( K = 0 /\ J = 0 /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( A X. B ) e. _V ) |
86 |
|
relexp0idm |
|- ( ( A X. B ) e. _V -> ( ( ( A X. B ) ^r 0 ) ^r 0 ) = ( ( A X. B ) ^r 0 ) ) |
87 |
85 86
|
syl |
|- ( ( ( K = 0 /\ J = 0 /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( ( A X. B ) ^r 0 ) ^r 0 ) = ( ( A X. B ) ^r 0 ) ) |
88 |
|
simpl2 |
|- ( ( ( K = 0 /\ J = 0 /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> J = 0 ) |
89 |
88
|
oveq2d |
|- ( ( ( K = 0 /\ J = 0 /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( A X. B ) ^r J ) = ( ( A X. B ) ^r 0 ) ) |
90 |
|
simpl1 |
|- ( ( ( K = 0 /\ J = 0 /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> K = 0 ) |
91 |
89 90
|
oveq12d |
|- ( ( ( K = 0 /\ J = 0 /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( ( A X. B ) ^r 0 ) ^r 0 ) ) |
92 |
|
simpl3 |
|- ( ( ( K = 0 /\ J = 0 /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> I = 0 ) |
93 |
92
|
oveq2d |
|- ( ( ( K = 0 /\ J = 0 /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( A X. B ) ^r I ) = ( ( A X. B ) ^r 0 ) ) |
94 |
87 91 93
|
3eqtr4d |
|- ( ( ( K = 0 /\ J = 0 /\ I = 0 ) /\ ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( A X. B ) ^r I ) ) |
95 |
94
|
3exp1 |
|- ( K = 0 -> ( J = 0 -> ( I = 0 -> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( A X. B ) ^r I ) ) ) ) ) |
96 |
82 95
|
jaod |
|- ( K = 0 -> ( ( J e. NN \/ J = 0 ) -> ( I = 0 -> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( A X. B ) ^r I ) ) ) ) ) |
97 |
64 66 73 96
|
syl3c |
|- ( ( K = 0 /\ J e. NN0 /\ I = if ( J < K , J , K ) ) -> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( A X. B ) ^r I ) ) ) |
98 |
97
|
3exp |
|- ( K = 0 -> ( J e. NN0 -> ( I = if ( J < K , J , K ) -> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( A X. B ) ^r I ) ) ) ) ) |
99 |
63 98
|
jaoi |
|- ( ( K e. NN \/ K = 0 ) -> ( J e. NN0 -> ( I = if ( J < K , J , K ) -> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( A X. B ) ^r I ) ) ) ) ) |
100 |
1 99
|
sylbi |
|- ( K e. NN0 -> ( J e. NN0 -> ( I = if ( J < K , J , K ) -> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( A X. B ) ^r I ) ) ) ) ) |
101 |
100
|
3imp31 |
|- ( ( I = if ( J < K , J , K ) /\ J e. NN0 /\ K e. NN0 ) -> ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( A X. B ) ^r I ) ) ) |
102 |
101
|
impcom |
|- ( ( ( A e. U /\ B e. V /\ ( A i^i B ) =/= (/) ) /\ ( I = if ( J < K , J , K ) /\ J e. NN0 /\ K e. NN0 ) ) -> ( ( ( A X. B ) ^r J ) ^r K ) = ( ( A X. B ) ^r I ) ) |