Metamath Proof Explorer


Theorem relexp0a

Description: Absorbtion law for zeroth power of a relation. (Contributed by RP, 17-Jun-2020)

Ref Expression
Assertion relexp0a A V N 0 A r N r 0 A r 0

Proof

Step Hyp Ref Expression
1 elnn0 N 0 N N = 0
2 oveq2 x = 1 A r x = A r 1
3 2 oveq1d x = 1 A r x r 0 = A r 1 r 0
4 3 sseq1d x = 1 A r x r 0 A r 0 A r 1 r 0 A r 0
5 4 imbi2d x = 1 A V A r x r 0 A r 0 A V A r 1 r 0 A r 0
6 oveq2 x = y A r x = A r y
7 6 oveq1d x = y A r x r 0 = A r y r 0
8 7 sseq1d x = y A r x r 0 A r 0 A r y r 0 A r 0
9 8 imbi2d x = y A V A r x r 0 A r 0 A V A r y r 0 A r 0
10 oveq2 x = y + 1 A r x = A r y + 1
11 10 oveq1d x = y + 1 A r x r 0 = A r y + 1 r 0
12 11 sseq1d x = y + 1 A r x r 0 A r 0 A r y + 1 r 0 A r 0
13 12 imbi2d x = y + 1 A V A r x r 0 A r 0 A V A r y + 1 r 0 A r 0
14 oveq2 x = N A r x = A r N
15 14 oveq1d x = N A r x r 0 = A r N r 0
16 15 sseq1d x = N A r x r 0 A r 0 A r N r 0 A r 0
17 16 imbi2d x = N A V A r x r 0 A r 0 A V A r N r 0 A r 0
18 relexp1g A V A r 1 = A
19 18 oveq1d A V A r 1 r 0 = A r 0
20 ssid A r 0 A r 0
21 19 20 eqsstrdi A V A r 1 r 0 A r 0
22 simp2 y A V A r y r 0 A r 0 A V
23 simp1 y A V A r y r 0 A r 0 y
24 relexpsucnnr A V y A r y + 1 = A r y A
25 24 oveq1d A V y A r y + 1 r 0 = A r y A r 0
26 22 23 25 syl2anc y A V A r y r 0 A r 0 A r y + 1 r 0 = A r y A r 0
27 ovex A r y V
28 coexg A r y V A V A r y A V
29 27 28 mpan A V A r y A V
30 relexp0g A r y A V A r y A r 0 = I dom A r y A ran A r y A
31 29 30 syl A V A r y A r 0 = I dom A r y A ran A r y A
32 dmcoss dom A r y A dom A
33 rncoss ran A r y A ran A r y
34 unss12 dom A r y A dom A ran A r y A ran A r y dom A r y A ran A r y A dom A ran A r y
35 32 33 34 mp2an dom A r y A ran A r y A dom A ran A r y
36 ssres2 dom A r y A ran A r y A dom A ran A r y I dom A r y A ran A r y A I dom A ran A r y
37 35 36 ax-mp I dom A r y A ran A r y A I dom A ran A r y
38 31 37 eqsstrdi A V A r y A r 0 I dom A ran A r y
39 22 38 syl y A V A r y r 0 A r 0 A r y A r 0 I dom A ran A r y
40 resundi I dom A ran A r y = I dom A I ran A r y
41 ssun1 dom A dom A ran A
42 ssres2 dom A dom A ran A I dom A I dom A ran A
43 41 42 ax-mp I dom A I dom A ran A
44 relexp0g A V A r 0 = I dom A ran A
45 43 44 sseqtrrid A V I dom A A r 0
46 45 adantr A V A r y r 0 A r 0 I dom A A r 0
47 ssun2 ran A r y dom A r y ran A r y
48 ssres2 ran A r y dom A r y ran A r y I ran A r y I dom A r y ran A r y
49 47 48 ax-mp I ran A r y I dom A r y ran A r y
50 relexp0g A r y V A r y r 0 = I dom A r y ran A r y
51 27 50 ax-mp A r y r 0 = I dom A r y ran A r y
52 49 51 sseqtrri I ran A r y A r y r 0
53 simpr A V A r y r 0 A r 0 A r y r 0 A r 0
54 52 53 sstrid A V A r y r 0 A r 0 I ran A r y A r 0
55 46 54 unssd A V A r y r 0 A r 0 I dom A I ran A r y A r 0
56 40 55 eqsstrid A V A r y r 0 A r 0 I dom A ran A r y A r 0
57 56 3adant1 y A V A r y r 0 A r 0 I dom A ran A r y A r 0
58 39 57 sstrd y A V A r y r 0 A r 0 A r y A r 0 A r 0
59 26 58 eqsstrd y A V A r y r 0 A r 0 A r y + 1 r 0 A r 0
60 59 3exp y A V A r y r 0 A r 0 A r y + 1 r 0 A r 0
61 60 a2d y A V A r y r 0 A r 0 A V A r y + 1 r 0 A r 0
62 5 9 13 17 21 61 nnind N A V A r N r 0 A r 0
63 oveq2 N = 0 A r N = A r 0
64 63 oveq1d N = 0 A r N r 0 = A r 0 r 0
65 relexp0idm A V A r 0 r 0 = A r 0
66 64 65 sylan9eq N = 0 A V A r N r 0 = A r 0
67 eqimss A r N r 0 = A r 0 A r N r 0 A r 0
68 66 67 syl N = 0 A V A r N r 0 A r 0
69 68 ex N = 0 A V A r N r 0 A r 0
70 62 69 jaoi N N = 0 A V A r N r 0 A r 0
71 1 70 sylbi N 0 A V A r N r 0 A r 0
72 71 impcom A V N 0 A r N r 0 A r 0