Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
2 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 𝐴 ↑𝑟 𝑥 ) = ( 𝐴 ↑𝑟 1 ) ) |
3 |
2
|
oveq1d |
⊢ ( 𝑥 = 1 → ( ( 𝐴 ↑𝑟 𝑥 ) ↑𝑟 0 ) = ( ( 𝐴 ↑𝑟 1 ) ↑𝑟 0 ) ) |
4 |
3
|
sseq1d |
⊢ ( 𝑥 = 1 → ( ( ( 𝐴 ↑𝑟 𝑥 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ↔ ( ( 𝐴 ↑𝑟 1 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) ) |
5 |
4
|
imbi2d |
⊢ ( 𝑥 = 1 → ( ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ↑𝑟 𝑥 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) ↔ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ↑𝑟 1 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) ) ) |
6 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑𝑟 𝑥 ) = ( 𝐴 ↑𝑟 𝑦 ) ) |
7 |
6
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ↑𝑟 𝑥 ) ↑𝑟 0 ) = ( ( 𝐴 ↑𝑟 𝑦 ) ↑𝑟 0 ) ) |
8 |
7
|
sseq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐴 ↑𝑟 𝑥 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ↔ ( ( 𝐴 ↑𝑟 𝑦 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) ) |
9 |
8
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ↑𝑟 𝑥 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) ↔ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ↑𝑟 𝑦 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐴 ↑𝑟 𝑥 ) = ( 𝐴 ↑𝑟 ( 𝑦 + 1 ) ) ) |
11 |
10
|
oveq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐴 ↑𝑟 𝑥 ) ↑𝑟 0 ) = ( ( 𝐴 ↑𝑟 ( 𝑦 + 1 ) ) ↑𝑟 0 ) ) |
12 |
11
|
sseq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝐴 ↑𝑟 𝑥 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ↔ ( ( 𝐴 ↑𝑟 ( 𝑦 + 1 ) ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) ) |
13 |
12
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ↑𝑟 𝑥 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) ↔ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ↑𝑟 ( 𝑦 + 1 ) ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) ) ) |
14 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝐴 ↑𝑟 𝑥 ) = ( 𝐴 ↑𝑟 𝑁 ) ) |
15 |
14
|
oveq1d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐴 ↑𝑟 𝑥 ) ↑𝑟 0 ) = ( ( 𝐴 ↑𝑟 𝑁 ) ↑𝑟 0 ) ) |
16 |
15
|
sseq1d |
⊢ ( 𝑥 = 𝑁 → ( ( ( 𝐴 ↑𝑟 𝑥 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ↔ ( ( 𝐴 ↑𝑟 𝑁 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) ) |
17 |
16
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ↑𝑟 𝑥 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) ↔ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ↑𝑟 𝑁 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) ) ) |
18 |
|
relexp1g |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ↑𝑟 1 ) = 𝐴 ) |
19 |
18
|
oveq1d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ↑𝑟 1 ) ↑𝑟 0 ) = ( 𝐴 ↑𝑟 0 ) ) |
20 |
|
ssid |
⊢ ( 𝐴 ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) |
21 |
19 20
|
eqsstrdi |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ↑𝑟 1 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) |
22 |
|
simp2 |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐴 ∈ 𝑉 ∧ ( ( 𝐴 ↑𝑟 𝑦 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) → 𝐴 ∈ 𝑉 ) |
23 |
|
simp1 |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐴 ∈ 𝑉 ∧ ( ( 𝐴 ↑𝑟 𝑦 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) → 𝑦 ∈ ℕ ) |
24 |
|
relexpsucnnr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ℕ ) → ( 𝐴 ↑𝑟 ( 𝑦 + 1 ) ) = ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ) |
25 |
24
|
oveq1d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ℕ ) → ( ( 𝐴 ↑𝑟 ( 𝑦 + 1 ) ) ↑𝑟 0 ) = ( ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ↑𝑟 0 ) ) |
26 |
22 23 25
|
syl2anc |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐴 ∈ 𝑉 ∧ ( ( 𝐴 ↑𝑟 𝑦 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) → ( ( 𝐴 ↑𝑟 ( 𝑦 + 1 ) ) ↑𝑟 0 ) = ( ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ↑𝑟 0 ) ) |
27 |
|
ovex |
⊢ ( 𝐴 ↑𝑟 𝑦 ) ∈ V |
28 |
|
coexg |
⊢ ( ( ( 𝐴 ↑𝑟 𝑦 ) ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ∈ V ) |
29 |
27 28
|
mpan |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ∈ V ) |
30 |
|
relexp0g |
⊢ ( ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ∈ V → ( ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ↑𝑟 0 ) = ( I ↾ ( dom ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ∪ ran ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ) ) ) |
31 |
29 30
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ↑𝑟 0 ) = ( I ↾ ( dom ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ∪ ran ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ) ) ) |
32 |
|
dmcoss |
⊢ dom ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ⊆ dom 𝐴 |
33 |
|
rncoss |
⊢ ran ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ⊆ ran ( 𝐴 ↑𝑟 𝑦 ) |
34 |
|
unss12 |
⊢ ( ( dom ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ⊆ dom 𝐴 ∧ ran ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ⊆ ran ( 𝐴 ↑𝑟 𝑦 ) ) → ( dom ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ∪ ran ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ) ⊆ ( dom 𝐴 ∪ ran ( 𝐴 ↑𝑟 𝑦 ) ) ) |
35 |
32 33 34
|
mp2an |
⊢ ( dom ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ∪ ran ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ) ⊆ ( dom 𝐴 ∪ ran ( 𝐴 ↑𝑟 𝑦 ) ) |
36 |
|
ssres2 |
⊢ ( ( dom ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ∪ ran ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ) ⊆ ( dom 𝐴 ∪ ran ( 𝐴 ↑𝑟 𝑦 ) ) → ( I ↾ ( dom ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ∪ ran ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ) ) ⊆ ( I ↾ ( dom 𝐴 ∪ ran ( 𝐴 ↑𝑟 𝑦 ) ) ) ) |
37 |
35 36
|
ax-mp |
⊢ ( I ↾ ( dom ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ∪ ran ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ) ) ⊆ ( I ↾ ( dom 𝐴 ∪ ran ( 𝐴 ↑𝑟 𝑦 ) ) ) |
38 |
31 37
|
eqsstrdi |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ↑𝑟 0 ) ⊆ ( I ↾ ( dom 𝐴 ∪ ran ( 𝐴 ↑𝑟 𝑦 ) ) ) ) |
39 |
22 38
|
syl |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐴 ∈ 𝑉 ∧ ( ( 𝐴 ↑𝑟 𝑦 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) → ( ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ↑𝑟 0 ) ⊆ ( I ↾ ( dom 𝐴 ∪ ran ( 𝐴 ↑𝑟 𝑦 ) ) ) ) |
40 |
|
resundi |
⊢ ( I ↾ ( dom 𝐴 ∪ ran ( 𝐴 ↑𝑟 𝑦 ) ) ) = ( ( I ↾ dom 𝐴 ) ∪ ( I ↾ ran ( 𝐴 ↑𝑟 𝑦 ) ) ) |
41 |
|
ssun1 |
⊢ dom 𝐴 ⊆ ( dom 𝐴 ∪ ran 𝐴 ) |
42 |
|
ssres2 |
⊢ ( dom 𝐴 ⊆ ( dom 𝐴 ∪ ran 𝐴 ) → ( I ↾ dom 𝐴 ) ⊆ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) |
43 |
41 42
|
ax-mp |
⊢ ( I ↾ dom 𝐴 ) ⊆ ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) |
44 |
|
relexp0g |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ↑𝑟 0 ) = ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) |
45 |
43 44
|
sseqtrrid |
⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ dom 𝐴 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) |
46 |
45
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ( 𝐴 ↑𝑟 𝑦 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) → ( I ↾ dom 𝐴 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) |
47 |
|
ssun2 |
⊢ ran ( 𝐴 ↑𝑟 𝑦 ) ⊆ ( dom ( 𝐴 ↑𝑟 𝑦 ) ∪ ran ( 𝐴 ↑𝑟 𝑦 ) ) |
48 |
|
ssres2 |
⊢ ( ran ( 𝐴 ↑𝑟 𝑦 ) ⊆ ( dom ( 𝐴 ↑𝑟 𝑦 ) ∪ ran ( 𝐴 ↑𝑟 𝑦 ) ) → ( I ↾ ran ( 𝐴 ↑𝑟 𝑦 ) ) ⊆ ( I ↾ ( dom ( 𝐴 ↑𝑟 𝑦 ) ∪ ran ( 𝐴 ↑𝑟 𝑦 ) ) ) ) |
49 |
47 48
|
ax-mp |
⊢ ( I ↾ ran ( 𝐴 ↑𝑟 𝑦 ) ) ⊆ ( I ↾ ( dom ( 𝐴 ↑𝑟 𝑦 ) ∪ ran ( 𝐴 ↑𝑟 𝑦 ) ) ) |
50 |
|
relexp0g |
⊢ ( ( 𝐴 ↑𝑟 𝑦 ) ∈ V → ( ( 𝐴 ↑𝑟 𝑦 ) ↑𝑟 0 ) = ( I ↾ ( dom ( 𝐴 ↑𝑟 𝑦 ) ∪ ran ( 𝐴 ↑𝑟 𝑦 ) ) ) ) |
51 |
27 50
|
ax-mp |
⊢ ( ( 𝐴 ↑𝑟 𝑦 ) ↑𝑟 0 ) = ( I ↾ ( dom ( 𝐴 ↑𝑟 𝑦 ) ∪ ran ( 𝐴 ↑𝑟 𝑦 ) ) ) |
52 |
49 51
|
sseqtrri |
⊢ ( I ↾ ran ( 𝐴 ↑𝑟 𝑦 ) ) ⊆ ( ( 𝐴 ↑𝑟 𝑦 ) ↑𝑟 0 ) |
53 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ( 𝐴 ↑𝑟 𝑦 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) → ( ( 𝐴 ↑𝑟 𝑦 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) |
54 |
52 53
|
sstrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ( 𝐴 ↑𝑟 𝑦 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) → ( I ↾ ran ( 𝐴 ↑𝑟 𝑦 ) ) ⊆ ( 𝐴 ↑𝑟 0 ) ) |
55 |
46 54
|
unssd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ( 𝐴 ↑𝑟 𝑦 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) → ( ( I ↾ dom 𝐴 ) ∪ ( I ↾ ran ( 𝐴 ↑𝑟 𝑦 ) ) ) ⊆ ( 𝐴 ↑𝑟 0 ) ) |
56 |
40 55
|
eqsstrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ( 𝐴 ↑𝑟 𝑦 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) → ( I ↾ ( dom 𝐴 ∪ ran ( 𝐴 ↑𝑟 𝑦 ) ) ) ⊆ ( 𝐴 ↑𝑟 0 ) ) |
57 |
56
|
3adant1 |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐴 ∈ 𝑉 ∧ ( ( 𝐴 ↑𝑟 𝑦 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) → ( I ↾ ( dom 𝐴 ∪ ran ( 𝐴 ↑𝑟 𝑦 ) ) ) ⊆ ( 𝐴 ↑𝑟 0 ) ) |
58 |
39 57
|
sstrd |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐴 ∈ 𝑉 ∧ ( ( 𝐴 ↑𝑟 𝑦 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) → ( ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) |
59 |
26 58
|
eqsstrd |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝐴 ∈ 𝑉 ∧ ( ( 𝐴 ↑𝑟 𝑦 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) → ( ( 𝐴 ↑𝑟 ( 𝑦 + 1 ) ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) |
60 |
59
|
3exp |
⊢ ( 𝑦 ∈ ℕ → ( 𝐴 ∈ 𝑉 → ( ( ( 𝐴 ↑𝑟 𝑦 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) → ( ( 𝐴 ↑𝑟 ( 𝑦 + 1 ) ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) ) ) |
61 |
60
|
a2d |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ↑𝑟 𝑦 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) → ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ↑𝑟 ( 𝑦 + 1 ) ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) ) ) |
62 |
5 9 13 17 21 61
|
nnind |
⊢ ( 𝑁 ∈ ℕ → ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ↑𝑟 𝑁 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) ) |
63 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 𝐴 ↑𝑟 𝑁 ) = ( 𝐴 ↑𝑟 0 ) ) |
64 |
63
|
oveq1d |
⊢ ( 𝑁 = 0 → ( ( 𝐴 ↑𝑟 𝑁 ) ↑𝑟 0 ) = ( ( 𝐴 ↑𝑟 0 ) ↑𝑟 0 ) ) |
65 |
|
relexp0idm |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ↑𝑟 0 ) ↑𝑟 0 ) = ( 𝐴 ↑𝑟 0 ) ) |
66 |
64 65
|
sylan9eq |
⊢ ( ( 𝑁 = 0 ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐴 ↑𝑟 𝑁 ) ↑𝑟 0 ) = ( 𝐴 ↑𝑟 0 ) ) |
67 |
|
eqimss |
⊢ ( ( ( 𝐴 ↑𝑟 𝑁 ) ↑𝑟 0 ) = ( 𝐴 ↑𝑟 0 ) → ( ( 𝐴 ↑𝑟 𝑁 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) |
68 |
66 67
|
syl |
⊢ ( ( 𝑁 = 0 ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐴 ↑𝑟 𝑁 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) |
69 |
68
|
ex |
⊢ ( 𝑁 = 0 → ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ↑𝑟 𝑁 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) ) |
70 |
62 69
|
jaoi |
⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ↑𝑟 𝑁 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) ) |
71 |
1 70
|
sylbi |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ↑𝑟 𝑁 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) ) |
72 |
71
|
impcom |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 ↑𝑟 𝑁 ) ↑𝑟 0 ) ⊆ ( 𝐴 ↑𝑟 0 ) ) |