| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2re |  |-  2 e. RR | 
						
							| 2 | 1 | a1i |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 e. RR ) | 
						
							| 3 |  | elioore |  |-  ( x e. ( 1 (,) +oo ) -> x e. RR ) | 
						
							| 4 | 3 | adantl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. RR ) | 
						
							| 5 |  | eliooord |  |-  ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 < x /\ x < +oo ) ) | 
						
							| 7 | 6 | simpld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 < x ) | 
						
							| 8 | 4 7 | rplogcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR+ ) | 
						
							| 9 | 2 8 | rerpdivcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. RR ) | 
						
							| 10 |  | fzfid |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 11 |  | elfznn |  |-  ( m e. ( 1 ... ( |_ ` x ) ) -> m e. NN ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> m e. NN ) | 
						
							| 13 |  | vmacl |  |-  ( m e. NN -> ( Lam ` m ) e. RR ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` m ) e. RR ) | 
						
							| 15 | 4 | adantr |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR ) | 
						
							| 16 | 15 12 | nndivred |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( x / m ) e. RR ) | 
						
							| 17 |  | chpcl |  |-  ( ( x / m ) e. RR -> ( psi ` ( x / m ) ) e. RR ) | 
						
							| 18 | 16 17 | syl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / m ) ) e. RR ) | 
						
							| 19 | 14 18 | remulcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) e. RR ) | 
						
							| 20 | 12 | nnrpd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> m e. RR+ ) | 
						
							| 21 | 20 | relogcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` m ) e. RR ) | 
						
							| 22 | 19 21 | remulcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) e. RR ) | 
						
							| 23 | 10 22 | fsumrecl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) e. RR ) | 
						
							| 24 | 9 23 | remulcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) e. RR ) | 
						
							| 25 | 10 19 | fsumrecl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) e. RR ) | 
						
							| 26 | 24 25 | resubcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) e. RR ) | 
						
							| 27 |  | 1rp |  |-  1 e. RR+ | 
						
							| 28 | 27 | a1i |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) | 
						
							| 29 |  | 1red |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR ) | 
						
							| 30 | 29 4 7 | ltled |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 <_ x ) | 
						
							| 31 | 4 28 30 | rpgecld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. RR+ ) | 
						
							| 32 | 26 31 | rerpdivcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) e. RR ) | 
						
							| 33 | 32 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) e. CC ) | 
						
							| 34 |  | chpcl |  |-  ( x e. RR -> ( psi ` x ) e. RR ) | 
						
							| 35 | 4 34 | syl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( psi ` x ) e. RR ) | 
						
							| 36 | 31 | relogcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR ) | 
						
							| 37 | 35 36 | remulcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` x ) x. ( log ` x ) ) e. RR ) | 
						
							| 38 | 37 25 | readdcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) e. RR ) | 
						
							| 39 | 38 31 | rerpdivcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) e. RR ) | 
						
							| 40 | 39 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) e. CC ) | 
						
							| 41 | 2 36 | remulcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( log ` x ) ) e. RR ) | 
						
							| 42 | 41 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( log ` x ) ) e. CC ) | 
						
							| 43 | 33 40 42 | addsubassd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) + ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) ) - ( 2 x. ( log ` x ) ) ) = ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) + ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) ) | 
						
							| 44 | 26 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) e. CC ) | 
						
							| 45 | 38 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) e. CC ) | 
						
							| 46 | 4 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. CC ) | 
						
							| 47 | 31 | rpne0d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x =/= 0 ) | 
						
							| 48 | 44 45 46 47 | divdird |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) + ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) ) / x ) = ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) + ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) ) ) | 
						
							| 49 | 24 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) e. CC ) | 
						
							| 50 | 25 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) e. CC ) | 
						
							| 51 | 37 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( psi ` x ) x. ( log ` x ) ) e. CC ) | 
						
							| 52 | 49 50 51 | nppcan3d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) + ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) ) | 
						
							| 53 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` ( x / m ) ) ) -> n e. NN ) | 
						
							| 54 | 53 | ad2antll |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> n e. NN ) | 
						
							| 55 |  | vmacl |  |-  ( n e. NN -> ( Lam ` n ) e. RR ) | 
						
							| 56 | 54 55 | syl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> ( Lam ` n ) e. RR ) | 
						
							| 57 | 14 | adantrr |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> ( Lam ` m ) e. RR ) | 
						
							| 58 | 20 | adantrr |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> m e. RR+ ) | 
						
							| 59 | 58 | relogcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> ( log ` m ) e. RR ) | 
						
							| 60 | 57 59 | remulcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> ( ( Lam ` m ) x. ( log ` m ) ) e. RR ) | 
						
							| 61 | 56 60 | remulcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) e. RR ) | 
						
							| 62 | 61 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) e. CC ) | 
						
							| 63 | 4 62 | fsumfldivdiag |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) | 
						
							| 64 | 14 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` m ) e. CC ) | 
						
							| 65 | 18 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / m ) ) e. CC ) | 
						
							| 66 | 21 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` m ) e. CC ) | 
						
							| 67 | 64 65 66 | mul32d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) = ( ( ( Lam ` m ) x. ( log ` m ) ) x. ( psi ` ( x / m ) ) ) ) | 
						
							| 68 | 64 66 | mulcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` m ) x. ( log ` m ) ) e. CC ) | 
						
							| 69 | 68 65 | mulcomd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` m ) x. ( log ` m ) ) x. ( psi ` ( x / m ) ) ) = ( ( psi ` ( x / m ) ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) | 
						
							| 70 |  | chpval |  |-  ( ( x / m ) e. RR -> ( psi ` ( x / m ) ) = sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( Lam ` n ) ) | 
						
							| 71 | 16 70 | syl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / m ) ) = sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( Lam ` n ) ) | 
						
							| 72 | 71 | oveq1d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / m ) ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) | 
						
							| 73 |  | fzfid |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x / m ) ) ) e. Fin ) | 
						
							| 74 | 56 | anassrs |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) -> ( Lam ` n ) e. RR ) | 
						
							| 75 | 74 | recnd |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) -> ( Lam ` n ) e. CC ) | 
						
							| 76 | 73 68 75 | fsummulc1 |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) = sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) | 
						
							| 77 | 72 76 | eqtrd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / m ) ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) = sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) | 
						
							| 78 | 67 69 77 | 3eqtrd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) = sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) | 
						
							| 79 | 78 | sumeq2dv |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) = sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) | 
						
							| 80 |  | fzfid |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x / n ) ) ) e. Fin ) | 
						
							| 81 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) | 
						
							| 82 | 81 | adantl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) | 
						
							| 83 | 82 55 | syl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) | 
						
							| 84 | 83 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. CC ) | 
						
							| 85 |  | elfznn |  |-  ( m e. ( 1 ... ( |_ ` ( x / n ) ) ) -> m e. NN ) | 
						
							| 86 | 85 | adantl |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. NN ) | 
						
							| 87 | 86 13 | syl |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( Lam ` m ) e. RR ) | 
						
							| 88 | 86 | nnrpd |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. RR+ ) | 
						
							| 89 | 88 | relogcld |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( log ` m ) e. RR ) | 
						
							| 90 | 87 89 | remulcld |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( log ` m ) ) e. RR ) | 
						
							| 91 | 90 | recnd |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( log ` m ) ) e. CC ) | 
						
							| 92 | 80 84 91 | fsummulc2 |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) | 
						
							| 93 | 92 | sumeq2dv |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) | 
						
							| 94 | 63 79 93 | 3eqtr4d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) | 
						
							| 95 | 94 | oveq2d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) ) | 
						
							| 96 | 95 | oveq1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) ) | 
						
							| 97 | 52 96 | eqtrd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) + ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) ) | 
						
							| 98 | 97 | oveq1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) + ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) ) / x ) = ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) | 
						
							| 99 | 48 98 | eqtr3d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) + ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) ) = ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) ) | 
						
							| 100 | 99 | oveq1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) + ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) ) - ( 2 x. ( log ` x ) ) ) = ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) | 
						
							| 101 | 43 100 | eqtr3d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) + ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) = ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) | 
						
							| 102 | 101 | mpteq2dva |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) + ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) ) | 
						
							| 103 | 39 41 | resubcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) e. RR ) | 
						
							| 104 |  | selberg3lem2 |  |-  ( x e. ( 1 (,) +oo ) |-> ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) ) e. O(1) | 
						
							| 105 | 104 | a1i |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) ) e. O(1) ) | 
						
							| 106 | 31 | ex |  |-  ( T. -> ( x e. ( 1 (,) +oo ) -> x e. RR+ ) ) | 
						
							| 107 | 106 | ssrdv |  |-  ( T. -> ( 1 (,) +oo ) C_ RR+ ) | 
						
							| 108 |  | selberg2 |  |-  ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) | 
						
							| 109 | 108 | a1i |  |-  ( T. -> ( x e. RR+ |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 110 | 107 109 | o1res2 |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 111 | 32 103 105 110 | o1add2 |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) + ( ( ( ( ( psi ` x ) x. ( log ` x ) ) + sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) ) e. O(1) ) | 
						
							| 112 | 102 111 | eqeltrrd |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 113 | 80 90 | fsumrecl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) e. RR ) | 
						
							| 114 | 83 113 | remulcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) e. RR ) | 
						
							| 115 | 10 114 | fsumrecl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) e. RR ) | 
						
							| 116 | 9 115 | remulcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) e. RR ) | 
						
							| 117 | 116 37 | readdcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) e. RR ) | 
						
							| 118 | 117 31 | rerpdivcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) e. RR ) | 
						
							| 119 | 118 41 | resubcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) e. RR ) | 
						
							| 120 | 119 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) e. CC ) | 
						
							| 121 | 4 | adantr |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR ) | 
						
							| 122 | 121 82 | nndivred |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) | 
						
							| 123 | 122 | adantr |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( x / n ) e. RR ) | 
						
							| 124 | 123 86 | nndivred |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( x / n ) / m ) e. RR ) | 
						
							| 125 |  | chpcl |  |-  ( ( ( x / n ) / m ) e. RR -> ( psi ` ( ( x / n ) / m ) ) e. RR ) | 
						
							| 126 | 124 125 | syl |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( psi ` ( ( x / n ) / m ) ) e. RR ) | 
						
							| 127 | 87 126 | remulcld |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) e. RR ) | 
						
							| 128 | 80 127 | fsumrecl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) e. RR ) | 
						
							| 129 | 83 128 | remulcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) e. RR ) | 
						
							| 130 | 10 129 | fsumrecl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) e. RR ) | 
						
							| 131 | 9 130 | remulcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) e. RR ) | 
						
							| 132 | 37 131 | resubcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) e. RR ) | 
						
							| 133 | 132 31 | rerpdivcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) e. RR ) | 
						
							| 134 | 133 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) e. CC ) | 
						
							| 135 | 116 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) e. CC ) | 
						
							| 136 | 131 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) e. CC ) | 
						
							| 137 | 51 135 136 | pnncand |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) ) - ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) | 
						
							| 138 | 135 51 | addcomd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) = ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) ) ) | 
						
							| 139 | 138 | oveq1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) - ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) = ( ( ( ( psi ` x ) x. ( log ` x ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) ) - ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) ) | 
						
							| 140 | 87 | recnd |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( Lam ` m ) e. CC ) | 
						
							| 141 | 89 | recnd |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( log ` m ) e. CC ) | 
						
							| 142 | 126 | recnd |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( psi ` ( ( x / n ) / m ) ) e. CC ) | 
						
							| 143 | 140 141 142 | adddid |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) = ( ( ( Lam ` m ) x. ( log ` m ) ) + ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) | 
						
							| 144 | 143 | sumeq2dv |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( ( Lam ` m ) x. ( log ` m ) ) + ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) | 
						
							| 145 | 127 | recnd |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) e. CC ) | 
						
							| 146 | 80 91 145 | fsumadd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( ( Lam ` m ) x. ( log ` m ) ) + ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) | 
						
							| 147 | 144 146 | eqtrd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) | 
						
							| 148 | 147 | oveq2d |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) = ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) | 
						
							| 149 | 113 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) e. CC ) | 
						
							| 150 | 128 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) e. CC ) | 
						
							| 151 | 84 149 150 | adddid |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) = ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) | 
						
							| 152 | 148 151 | eqtrd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) = ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) | 
						
							| 153 | 152 | sumeq2dv |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) | 
						
							| 154 | 114 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) e. CC ) | 
						
							| 155 | 129 | recnd |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) e. CC ) | 
						
							| 156 | 10 154 155 | fsumadd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) | 
						
							| 157 | 153 156 | eqtrd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) | 
						
							| 158 | 157 | oveq2d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) = ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) | 
						
							| 159 | 9 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. CC ) | 
						
							| 160 | 115 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) e. CC ) | 
						
							| 161 | 130 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) e. CC ) | 
						
							| 162 | 159 160 161 | adddid |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) | 
						
							| 163 | 158 162 | eqtrd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) | 
						
							| 164 | 137 139 163 | 3eqtr4d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) - ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) | 
						
							| 165 | 164 | oveq1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) - ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) / x ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) | 
						
							| 166 | 117 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) e. CC ) | 
						
							| 167 | 51 136 | subcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) e. CC ) | 
						
							| 168 | 166 167 46 47 | divsubdird |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) - ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) / x ) = ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) ) | 
						
							| 169 |  | 2cnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 2 e. CC ) | 
						
							| 170 | 89 126 | readdcld |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) e. RR ) | 
						
							| 171 | 87 170 | remulcld |  |-  ( ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) e. RR ) | 
						
							| 172 | 80 171 | fsumrecl |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) e. RR ) | 
						
							| 173 | 83 172 | remulcld |  |-  ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) e. RR ) | 
						
							| 174 | 10 173 | fsumrecl |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) e. RR ) | 
						
							| 175 | 174 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) e. CC ) | 
						
							| 176 | 169 175 | mulcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) e. CC ) | 
						
							| 177 | 36 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. CC ) | 
						
							| 178 | 8 | rpne0d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) =/= 0 ) | 
						
							| 179 | 176 177 46 178 47 | divdiv1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / ( log ` x ) ) / x ) = ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / ( ( log ` x ) x. x ) ) ) | 
						
							| 180 | 177 46 | mulcomd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) x. x ) = ( x x. ( log ` x ) ) ) | 
						
							| 181 | 180 | oveq2d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / ( ( log ` x ) x. x ) ) = ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) | 
						
							| 182 | 179 181 | eqtrd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / ( log ` x ) ) / x ) = ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) | 
						
							| 183 | 169 175 177 178 | div23d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / ( log ` x ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) ) | 
						
							| 184 | 183 | oveq1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / ( log ` x ) ) / x ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) | 
						
							| 185 | 31 8 | rpmulcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. RR+ ) | 
						
							| 186 | 185 | rpcnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. CC ) | 
						
							| 187 | 185 | rpne0d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) =/= 0 ) | 
						
							| 188 | 169 175 186 187 | divassd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / ( x x. ( log ` x ) ) ) = ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) | 
						
							| 189 | 182 184 188 | 3eqtr3d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) = ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) | 
						
							| 190 | 165 168 189 | 3eqtr3d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) = ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) ) | 
						
							| 191 | 190 | oveq1d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) - ( 2 x. ( log ` x ) ) ) = ( ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) - ( 2 x. ( log ` x ) ) ) ) | 
						
							| 192 | 118 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) e. CC ) | 
						
							| 193 | 192 42 134 | sub32d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) = ( ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) - ( 2 x. ( log ` x ) ) ) ) | 
						
							| 194 | 174 185 | rerpdivcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) e. RR ) | 
						
							| 195 | 194 | recnd |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) e. CC ) | 
						
							| 196 | 169 195 177 | subdid |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) ) = ( ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) ) - ( 2 x. ( log ` x ) ) ) ) | 
						
							| 197 | 191 193 196 | 3eqtr4d |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) = ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) ) ) | 
						
							| 198 | 197 | mpteq2dva |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) ) ) ) | 
						
							| 199 | 194 36 | resubcld |  |-  ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) e. RR ) | 
						
							| 200 |  | ioossre |  |-  ( 1 (,) +oo ) C_ RR | 
						
							| 201 |  | 2cnd |  |-  ( T. -> 2 e. CC ) | 
						
							| 202 |  | o1const |  |-  ( ( ( 1 (,) +oo ) C_ RR /\ 2 e. CC ) -> ( x e. ( 1 (,) +oo ) |-> 2 ) e. O(1) ) | 
						
							| 203 | 200 201 202 | sylancr |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> 2 ) e. O(1) ) | 
						
							| 204 |  | selbergb |  |-  E. c e. RR+ A. y e. ( 1 [,) +oo ) ( abs ` ( ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( y / i ) ) ) ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c | 
						
							| 205 |  | simpl |  |-  ( ( c e. RR+ /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( y / i ) ) ) ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c ) -> c e. RR+ ) | 
						
							| 206 |  | simpr |  |-  ( ( c e. RR+ /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( y / i ) ) ) ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c ) -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( y / i ) ) ) ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c ) | 
						
							| 207 | 205 206 | selberg4lem1 |  |-  ( ( c e. RR+ /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( y / i ) ) ) ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c ) -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) ) e. O(1) ) | 
						
							| 208 | 207 | rexlimiva |  |-  ( E. c e. RR+ A. y e. ( 1 [,) +oo ) ( abs ` ( ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` i ) x. ( ( log ` i ) + ( psi ` ( y / i ) ) ) ) / y ) - ( 2 x. ( log ` y ) ) ) ) <_ c -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) ) e. O(1) ) | 
						
							| 209 | 204 208 | mp1i |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) ) e. O(1) ) | 
						
							| 210 | 2 199 203 209 | o1mul2 |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( 2 x. ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( ( log ` m ) + ( psi ` ( ( x / n ) / m ) ) ) ) ) / ( x x. ( log ` x ) ) ) - ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 211 | 198 210 | eqeltrd |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) - ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) ) e. O(1) ) | 
						
							| 212 | 120 134 211 | o1dif |  |-  ( T. -> ( ( x e. ( 1 (,) +oo ) |-> ( ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) + ( ( psi ` x ) x. ( log ` x ) ) ) / x ) - ( 2 x. ( log ` x ) ) ) ) e. O(1) <-> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) e. O(1) ) ) | 
						
							| 213 | 112 212 | mpbid |  |-  ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) e. O(1) ) | 
						
							| 214 | 213 | mptru |  |-  ( x e. ( 1 (,) +oo ) |-> ( ( ( ( psi ` x ) x. ( log ` x ) ) - ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( psi ` ( ( x / n ) / m ) ) ) ) ) ) / x ) ) e. O(1) |