| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfzo0 |  |-  ( A e. ( 0 ..^ N ) <-> ( A e. NN0 /\ N e. NN /\ A < N ) ) | 
						
							| 2 |  | elfzo0 |  |-  ( I e. ( 0 ..^ N ) <-> ( I e. NN0 /\ N e. NN /\ I < N ) ) | 
						
							| 3 |  | nnre |  |-  ( N e. NN -> N e. RR ) | 
						
							| 4 | 3 | 3ad2ant2 |  |-  ( ( I e. NN0 /\ N e. NN /\ I < N ) -> N e. RR ) | 
						
							| 5 |  | nn0re |  |-  ( A e. NN0 -> A e. RR ) | 
						
							| 6 | 5 | adantr |  |-  ( ( A e. NN0 /\ A < N ) -> A e. RR ) | 
						
							| 7 |  | resubcl |  |-  ( ( N e. RR /\ A e. RR ) -> ( N - A ) e. RR ) | 
						
							| 8 | 4 6 7 | syl2anr |  |-  ( ( ( A e. NN0 /\ A < N ) /\ ( I e. NN0 /\ N e. NN /\ I < N ) ) -> ( N - A ) e. RR ) | 
						
							| 9 |  | nn0re |  |-  ( I e. NN0 -> I e. RR ) | 
						
							| 10 | 9 | 3ad2ant1 |  |-  ( ( I e. NN0 /\ N e. NN /\ I < N ) -> I e. RR ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ( A e. NN0 /\ A < N ) /\ ( I e. NN0 /\ N e. NN /\ I < N ) ) -> I e. RR ) | 
						
							| 12 |  | lenlt |  |-  ( ( ( N - A ) e. RR /\ I e. RR ) -> ( ( N - A ) <_ I <-> -. I < ( N - A ) ) ) | 
						
							| 13 | 12 | bicomd |  |-  ( ( ( N - A ) e. RR /\ I e. RR ) -> ( -. I < ( N - A ) <-> ( N - A ) <_ I ) ) | 
						
							| 14 | 8 11 13 | syl2anc |  |-  ( ( ( A e. NN0 /\ A < N ) /\ ( I e. NN0 /\ N e. NN /\ I < N ) ) -> ( -. I < ( N - A ) <-> ( N - A ) <_ I ) ) | 
						
							| 15 | 14 | biimpa |  |-  ( ( ( ( A e. NN0 /\ A < N ) /\ ( I e. NN0 /\ N e. NN /\ I < N ) ) /\ -. I < ( N - A ) ) -> ( N - A ) <_ I ) | 
						
							| 16 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 17 | 16 | 3ad2ant2 |  |-  ( ( I e. NN0 /\ N e. NN /\ I < N ) -> N e. ZZ ) | 
						
							| 18 |  | nn0z |  |-  ( A e. NN0 -> A e. ZZ ) | 
						
							| 19 | 18 | adantr |  |-  ( ( A e. NN0 /\ A < N ) -> A e. ZZ ) | 
						
							| 20 |  | zsubcl |  |-  ( ( N e. ZZ /\ A e. ZZ ) -> ( N - A ) e. ZZ ) | 
						
							| 21 | 17 19 20 | syl2anr |  |-  ( ( ( A e. NN0 /\ A < N ) /\ ( I e. NN0 /\ N e. NN /\ I < N ) ) -> ( N - A ) e. ZZ ) | 
						
							| 22 |  | ltle |  |-  ( ( A e. RR /\ N e. RR ) -> ( A < N -> A <_ N ) ) | 
						
							| 23 | 5 4 22 | syl2an |  |-  ( ( A e. NN0 /\ ( I e. NN0 /\ N e. NN /\ I < N ) ) -> ( A < N -> A <_ N ) ) | 
						
							| 24 | 23 | impancom |  |-  ( ( A e. NN0 /\ A < N ) -> ( ( I e. NN0 /\ N e. NN /\ I < N ) -> A <_ N ) ) | 
						
							| 25 | 24 | imp |  |-  ( ( ( A e. NN0 /\ A < N ) /\ ( I e. NN0 /\ N e. NN /\ I < N ) ) -> A <_ N ) | 
						
							| 26 |  | subge0 |  |-  ( ( N e. RR /\ A e. RR ) -> ( 0 <_ ( N - A ) <-> A <_ N ) ) | 
						
							| 27 | 4 6 26 | syl2anr |  |-  ( ( ( A e. NN0 /\ A < N ) /\ ( I e. NN0 /\ N e. NN /\ I < N ) ) -> ( 0 <_ ( N - A ) <-> A <_ N ) ) | 
						
							| 28 | 25 27 | mpbird |  |-  ( ( ( A e. NN0 /\ A < N ) /\ ( I e. NN0 /\ N e. NN /\ I < N ) ) -> 0 <_ ( N - A ) ) | 
						
							| 29 |  | elnn0z |  |-  ( ( N - A ) e. NN0 <-> ( ( N - A ) e. ZZ /\ 0 <_ ( N - A ) ) ) | 
						
							| 30 | 21 28 29 | sylanbrc |  |-  ( ( ( A e. NN0 /\ A < N ) /\ ( I e. NN0 /\ N e. NN /\ I < N ) ) -> ( N - A ) e. NN0 ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( ( A e. NN0 /\ A < N ) /\ ( I e. NN0 /\ N e. NN /\ I < N ) ) /\ -. I < ( N - A ) ) -> ( N - A ) e. NN0 ) | 
						
							| 32 |  | simplr1 |  |-  ( ( ( ( A e. NN0 /\ A < N ) /\ ( I e. NN0 /\ N e. NN /\ I < N ) ) /\ -. I < ( N - A ) ) -> I e. NN0 ) | 
						
							| 33 |  | nn0sub |  |-  ( ( ( N - A ) e. NN0 /\ I e. NN0 ) -> ( ( N - A ) <_ I <-> ( I - ( N - A ) ) e. NN0 ) ) | 
						
							| 34 | 31 32 33 | syl2anc |  |-  ( ( ( ( A e. NN0 /\ A < N ) /\ ( I e. NN0 /\ N e. NN /\ I < N ) ) /\ -. I < ( N - A ) ) -> ( ( N - A ) <_ I <-> ( I - ( N - A ) ) e. NN0 ) ) | 
						
							| 35 | 15 34 | mpbid |  |-  ( ( ( ( A e. NN0 /\ A < N ) /\ ( I e. NN0 /\ N e. NN /\ I < N ) ) /\ -. I < ( N - A ) ) -> ( I - ( N - A ) ) e. NN0 ) | 
						
							| 36 |  | elnn0uz |  |-  ( ( I - ( N - A ) ) e. NN0 <-> ( I - ( N - A ) ) e. ( ZZ>= ` 0 ) ) | 
						
							| 37 | 35 36 | sylib |  |-  ( ( ( ( A e. NN0 /\ A < N ) /\ ( I e. NN0 /\ N e. NN /\ I < N ) ) /\ -. I < ( N - A ) ) -> ( I - ( N - A ) ) e. ( ZZ>= ` 0 ) ) | 
						
							| 38 | 19 | adantr |  |-  ( ( ( A e. NN0 /\ A < N ) /\ ( I e. NN0 /\ N e. NN /\ I < N ) ) -> A e. ZZ ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ( ( A e. NN0 /\ A < N ) /\ ( I e. NN0 /\ N e. NN /\ I < N ) ) /\ -. I < ( N - A ) ) -> A e. ZZ ) | 
						
							| 40 | 9 | adantr |  |-  ( ( I e. NN0 /\ N e. NN ) -> I e. RR ) | 
						
							| 41 | 40 | adantl |  |-  ( ( A e. NN0 /\ ( I e. NN0 /\ N e. NN ) ) -> I e. RR ) | 
						
							| 42 | 3 | adantl |  |-  ( ( I e. NN0 /\ N e. NN ) -> N e. RR ) | 
						
							| 43 | 42 | adantl |  |-  ( ( A e. NN0 /\ ( I e. NN0 /\ N e. NN ) ) -> N e. RR ) | 
						
							| 44 | 42 5 7 | syl2anr |  |-  ( ( A e. NN0 /\ ( I e. NN0 /\ N e. NN ) ) -> ( N - A ) e. RR ) | 
						
							| 45 | 41 43 44 | ltsub1d |  |-  ( ( A e. NN0 /\ ( I e. NN0 /\ N e. NN ) ) -> ( I < N <-> ( I - ( N - A ) ) < ( N - ( N - A ) ) ) ) | 
						
							| 46 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 47 | 46 | adantl |  |-  ( ( I e. NN0 /\ N e. NN ) -> N e. CC ) | 
						
							| 48 |  | nn0cn |  |-  ( A e. NN0 -> A e. CC ) | 
						
							| 49 |  | nncan |  |-  ( ( N e. CC /\ A e. CC ) -> ( N - ( N - A ) ) = A ) | 
						
							| 50 | 47 48 49 | syl2anr |  |-  ( ( A e. NN0 /\ ( I e. NN0 /\ N e. NN ) ) -> ( N - ( N - A ) ) = A ) | 
						
							| 51 | 50 | breq2d |  |-  ( ( A e. NN0 /\ ( I e. NN0 /\ N e. NN ) ) -> ( ( I - ( N - A ) ) < ( N - ( N - A ) ) <-> ( I - ( N - A ) ) < A ) ) | 
						
							| 52 | 51 | biimpd |  |-  ( ( A e. NN0 /\ ( I e. NN0 /\ N e. NN ) ) -> ( ( I - ( N - A ) ) < ( N - ( N - A ) ) -> ( I - ( N - A ) ) < A ) ) | 
						
							| 53 | 45 52 | sylbid |  |-  ( ( A e. NN0 /\ ( I e. NN0 /\ N e. NN ) ) -> ( I < N -> ( I - ( N - A ) ) < A ) ) | 
						
							| 54 | 53 | ex |  |-  ( A e. NN0 -> ( ( I e. NN0 /\ N e. NN ) -> ( I < N -> ( I - ( N - A ) ) < A ) ) ) | 
						
							| 55 | 54 | adantr |  |-  ( ( A e. NN0 /\ A < N ) -> ( ( I e. NN0 /\ N e. NN ) -> ( I < N -> ( I - ( N - A ) ) < A ) ) ) | 
						
							| 56 | 55 | com3l |  |-  ( ( I e. NN0 /\ N e. NN ) -> ( I < N -> ( ( A e. NN0 /\ A < N ) -> ( I - ( N - A ) ) < A ) ) ) | 
						
							| 57 | 56 | 3impia |  |-  ( ( I e. NN0 /\ N e. NN /\ I < N ) -> ( ( A e. NN0 /\ A < N ) -> ( I - ( N - A ) ) < A ) ) | 
						
							| 58 | 57 | impcom |  |-  ( ( ( A e. NN0 /\ A < N ) /\ ( I e. NN0 /\ N e. NN /\ I < N ) ) -> ( I - ( N - A ) ) < A ) | 
						
							| 59 | 58 | adantr |  |-  ( ( ( ( A e. NN0 /\ A < N ) /\ ( I e. NN0 /\ N e. NN /\ I < N ) ) /\ -. I < ( N - A ) ) -> ( I - ( N - A ) ) < A ) | 
						
							| 60 | 37 39 59 | 3jca |  |-  ( ( ( ( A e. NN0 /\ A < N ) /\ ( I e. NN0 /\ N e. NN /\ I < N ) ) /\ -. I < ( N - A ) ) -> ( ( I - ( N - A ) ) e. ( ZZ>= ` 0 ) /\ A e. ZZ /\ ( I - ( N - A ) ) < A ) ) | 
						
							| 61 | 60 | exp31 |  |-  ( ( A e. NN0 /\ A < N ) -> ( ( I e. NN0 /\ N e. NN /\ I < N ) -> ( -. I < ( N - A ) -> ( ( I - ( N - A ) ) e. ( ZZ>= ` 0 ) /\ A e. ZZ /\ ( I - ( N - A ) ) < A ) ) ) ) | 
						
							| 62 | 2 61 | biimtrid |  |-  ( ( A e. NN0 /\ A < N ) -> ( I e. ( 0 ..^ N ) -> ( -. I < ( N - A ) -> ( ( I - ( N - A ) ) e. ( ZZ>= ` 0 ) /\ A e. ZZ /\ ( I - ( N - A ) ) < A ) ) ) ) | 
						
							| 63 | 62 | 3adant2 |  |-  ( ( A e. NN0 /\ N e. NN /\ A < N ) -> ( I e. ( 0 ..^ N ) -> ( -. I < ( N - A ) -> ( ( I - ( N - A ) ) e. ( ZZ>= ` 0 ) /\ A e. ZZ /\ ( I - ( N - A ) ) < A ) ) ) ) | 
						
							| 64 | 1 63 | sylbi |  |-  ( A e. ( 0 ..^ N ) -> ( I e. ( 0 ..^ N ) -> ( -. I < ( N - A ) -> ( ( I - ( N - A ) ) e. ( ZZ>= ` 0 ) /\ A e. ZZ /\ ( I - ( N - A ) ) < A ) ) ) ) | 
						
							| 65 | 64 | 3imp |  |-  ( ( A e. ( 0 ..^ N ) /\ I e. ( 0 ..^ N ) /\ -. I < ( N - A ) ) -> ( ( I - ( N - A ) ) e. ( ZZ>= ` 0 ) /\ A e. ZZ /\ ( I - ( N - A ) ) < A ) ) | 
						
							| 66 |  | elfzo2 |  |-  ( ( I - ( N - A ) ) e. ( 0 ..^ A ) <-> ( ( I - ( N - A ) ) e. ( ZZ>= ` 0 ) /\ A e. ZZ /\ ( I - ( N - A ) ) < A ) ) | 
						
							| 67 | 65 66 | sylibr |  |-  ( ( A e. ( 0 ..^ N ) /\ I e. ( 0 ..^ N ) /\ -. I < ( N - A ) ) -> ( I - ( N - A ) ) e. ( 0 ..^ A ) ) |