Step |
Hyp |
Ref |
Expression |
1 |
|
elfzo0 |
|
2 |
|
elfzo0 |
|
3 |
|
nnre |
|
4 |
3
|
3ad2ant2 |
|
5 |
|
nn0re |
|
6 |
5
|
adantr |
|
7 |
|
resubcl |
|
8 |
4 6 7
|
syl2anr |
|
9 |
|
nn0re |
|
10 |
9
|
3ad2ant1 |
|
11 |
10
|
adantl |
|
12 |
|
lenlt |
|
13 |
12
|
bicomd |
|
14 |
8 11 13
|
syl2anc |
|
15 |
14
|
biimpa |
|
16 |
|
nnz |
|
17 |
16
|
3ad2ant2 |
|
18 |
|
nn0z |
|
19 |
18
|
adantr |
|
20 |
|
zsubcl |
|
21 |
17 19 20
|
syl2anr |
|
22 |
|
ltle |
|
23 |
5 4 22
|
syl2an |
|
24 |
23
|
impancom |
|
25 |
24
|
imp |
|
26 |
|
subge0 |
|
27 |
4 6 26
|
syl2anr |
|
28 |
25 27
|
mpbird |
|
29 |
|
elnn0z |
|
30 |
21 28 29
|
sylanbrc |
|
31 |
30
|
adantr |
|
32 |
|
simplr1 |
|
33 |
|
nn0sub |
|
34 |
31 32 33
|
syl2anc |
|
35 |
15 34
|
mpbid |
|
36 |
|
elnn0uz |
|
37 |
35 36
|
sylib |
|
38 |
19
|
adantr |
|
39 |
38
|
adantr |
|
40 |
9
|
adantr |
|
41 |
40
|
adantl |
|
42 |
3
|
adantl |
|
43 |
42
|
adantl |
|
44 |
42 5 7
|
syl2anr |
|
45 |
41 43 44
|
ltsub1d |
|
46 |
|
nncn |
|
47 |
46
|
adantl |
|
48 |
|
nn0cn |
|
49 |
|
nncan |
|
50 |
47 48 49
|
syl2anr |
|
51 |
50
|
breq2d |
|
52 |
51
|
biimpd |
|
53 |
45 52
|
sylbid |
|
54 |
53
|
ex |
|
55 |
54
|
adantr |
|
56 |
55
|
com3l |
|
57 |
56
|
3impia |
|
58 |
57
|
impcom |
|
59 |
58
|
adantr |
|
60 |
37 39 59
|
3jca |
|
61 |
60
|
exp31 |
|
62 |
2 61
|
syl5bi |
|
63 |
62
|
3adant2 |
|
64 |
1 63
|
sylbi |
|
65 |
64
|
3imp |
|
66 |
|
elfzo2 |
|
67 |
65 66
|
sylibr |
|