| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unbenlem.1 |  |-  G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) | 
						
							| 2 |  | nnex |  |-  NN e. _V | 
						
							| 3 | 2 | ssex |  |-  ( A C_ NN -> A e. _V ) | 
						
							| 4 |  | 1z |  |-  1 e. ZZ | 
						
							| 5 | 4 1 | om2uzf1oi |  |-  G : _om -1-1-onto-> ( ZZ>= ` 1 ) | 
						
							| 6 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 7 |  | f1oeq3 |  |-  ( NN = ( ZZ>= ` 1 ) -> ( G : _om -1-1-onto-> NN <-> G : _om -1-1-onto-> ( ZZ>= ` 1 ) ) ) | 
						
							| 8 | 6 7 | ax-mp |  |-  ( G : _om -1-1-onto-> NN <-> G : _om -1-1-onto-> ( ZZ>= ` 1 ) ) | 
						
							| 9 | 5 8 | mpbir |  |-  G : _om -1-1-onto-> NN | 
						
							| 10 |  | f1ocnv |  |-  ( G : _om -1-1-onto-> NN -> `' G : NN -1-1-onto-> _om ) | 
						
							| 11 |  | f1of1 |  |-  ( `' G : NN -1-1-onto-> _om -> `' G : NN -1-1-> _om ) | 
						
							| 12 | 9 10 11 | mp2b |  |-  `' G : NN -1-1-> _om | 
						
							| 13 |  | f1ores |  |-  ( ( `' G : NN -1-1-> _om /\ A C_ NN ) -> ( `' G |` A ) : A -1-1-onto-> ( `' G " A ) ) | 
						
							| 14 | 12 13 | mpan |  |-  ( A C_ NN -> ( `' G |` A ) : A -1-1-onto-> ( `' G " A ) ) | 
						
							| 15 |  | f1oeng |  |-  ( ( A e. _V /\ ( `' G |` A ) : A -1-1-onto-> ( `' G " A ) ) -> A ~~ ( `' G " A ) ) | 
						
							| 16 | 3 14 15 | syl2anc |  |-  ( A C_ NN -> A ~~ ( `' G " A ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( A C_ NN /\ A. m e. NN E. n e. A m < n ) -> A ~~ ( `' G " A ) ) | 
						
							| 18 |  | imassrn |  |-  ( `' G " A ) C_ ran `' G | 
						
							| 19 |  | dfdm4 |  |-  dom G = ran `' G | 
						
							| 20 |  | f1of |  |-  ( G : _om -1-1-onto-> NN -> G : _om --> NN ) | 
						
							| 21 | 9 20 | ax-mp |  |-  G : _om --> NN | 
						
							| 22 | 21 | fdmi |  |-  dom G = _om | 
						
							| 23 | 19 22 | eqtr3i |  |-  ran `' G = _om | 
						
							| 24 | 18 23 | sseqtri |  |-  ( `' G " A ) C_ _om | 
						
							| 25 | 4 1 | om2uzuzi |  |-  ( y e. _om -> ( G ` y ) e. ( ZZ>= ` 1 ) ) | 
						
							| 26 | 25 6 | eleqtrrdi |  |-  ( y e. _om -> ( G ` y ) e. NN ) | 
						
							| 27 |  | breq1 |  |-  ( m = ( G ` y ) -> ( m < n <-> ( G ` y ) < n ) ) | 
						
							| 28 | 27 | rexbidv |  |-  ( m = ( G ` y ) -> ( E. n e. A m < n <-> E. n e. A ( G ` y ) < n ) ) | 
						
							| 29 | 28 | rspcv |  |-  ( ( G ` y ) e. NN -> ( A. m e. NN E. n e. A m < n -> E. n e. A ( G ` y ) < n ) ) | 
						
							| 30 | 26 29 | syl |  |-  ( y e. _om -> ( A. m e. NN E. n e. A m < n -> E. n e. A ( G ` y ) < n ) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( y e. _om /\ A C_ NN ) -> ( A. m e. NN E. n e. A m < n -> E. n e. A ( G ` y ) < n ) ) | 
						
							| 32 |  | f1ocnv |  |-  ( ( `' G |` A ) : A -1-1-onto-> ( `' G " A ) -> `' ( `' G |` A ) : ( `' G " A ) -1-1-onto-> A ) | 
						
							| 33 | 14 32 | syl |  |-  ( A C_ NN -> `' ( `' G |` A ) : ( `' G " A ) -1-1-onto-> A ) | 
						
							| 34 |  | f1ofun |  |-  ( G : _om -1-1-onto-> NN -> Fun G ) | 
						
							| 35 | 9 34 | ax-mp |  |-  Fun G | 
						
							| 36 |  | funcnvres2 |  |-  ( Fun G -> `' ( `' G |` A ) = ( G |` ( `' G " A ) ) ) | 
						
							| 37 |  | f1oeq1 |  |-  ( `' ( `' G |` A ) = ( G |` ( `' G " A ) ) -> ( `' ( `' G |` A ) : ( `' G " A ) -1-1-onto-> A <-> ( G |` ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A ) ) | 
						
							| 38 | 35 36 37 | mp2b |  |-  ( `' ( `' G |` A ) : ( `' G " A ) -1-1-onto-> A <-> ( G |` ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A ) | 
						
							| 39 | 33 38 | sylib |  |-  ( A C_ NN -> ( G |` ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A ) | 
						
							| 40 |  | f1ofo |  |-  ( ( G |` ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A -> ( G |` ( `' G " A ) ) : ( `' G " A ) -onto-> A ) | 
						
							| 41 |  | forn |  |-  ( ( G |` ( `' G " A ) ) : ( `' G " A ) -onto-> A -> ran ( G |` ( `' G " A ) ) = A ) | 
						
							| 42 | 40 41 | syl |  |-  ( ( G |` ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A -> ran ( G |` ( `' G " A ) ) = A ) | 
						
							| 43 | 42 | eleq2d |  |-  ( ( G |` ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A -> ( n e. ran ( G |` ( `' G " A ) ) <-> n e. A ) ) | 
						
							| 44 |  | f1ofn |  |-  ( ( G |` ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A -> ( G |` ( `' G " A ) ) Fn ( `' G " A ) ) | 
						
							| 45 |  | fvelrnb |  |-  ( ( G |` ( `' G " A ) ) Fn ( `' G " A ) -> ( n e. ran ( G |` ( `' G " A ) ) <-> E. m e. ( `' G " A ) ( ( G |` ( `' G " A ) ) ` m ) = n ) ) | 
						
							| 46 | 44 45 | syl |  |-  ( ( G |` ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A -> ( n e. ran ( G |` ( `' G " A ) ) <-> E. m e. ( `' G " A ) ( ( G |` ( `' G " A ) ) ` m ) = n ) ) | 
						
							| 47 | 43 46 | bitr3d |  |-  ( ( G |` ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A -> ( n e. A <-> E. m e. ( `' G " A ) ( ( G |` ( `' G " A ) ) ` m ) = n ) ) | 
						
							| 48 | 39 47 | syl |  |-  ( A C_ NN -> ( n e. A <-> E. m e. ( `' G " A ) ( ( G |` ( `' G " A ) ) ` m ) = n ) ) | 
						
							| 49 | 48 | biimpa |  |-  ( ( A C_ NN /\ n e. A ) -> E. m e. ( `' G " A ) ( ( G |` ( `' G " A ) ) ` m ) = n ) | 
						
							| 50 |  | fvres |  |-  ( m e. ( `' G " A ) -> ( ( G |` ( `' G " A ) ) ` m ) = ( G ` m ) ) | 
						
							| 51 | 50 | eqeq1d |  |-  ( m e. ( `' G " A ) -> ( ( ( G |` ( `' G " A ) ) ` m ) = n <-> ( G ` m ) = n ) ) | 
						
							| 52 | 51 | biimpa |  |-  ( ( m e. ( `' G " A ) /\ ( ( G |` ( `' G " A ) ) ` m ) = n ) -> ( G ` m ) = n ) | 
						
							| 53 | 52 | adantll |  |-  ( ( ( y e. _om /\ m e. ( `' G " A ) ) /\ ( ( G |` ( `' G " A ) ) ` m ) = n ) -> ( G ` m ) = n ) | 
						
							| 54 | 24 | sseli |  |-  ( m e. ( `' G " A ) -> m e. _om ) | 
						
							| 55 | 4 1 | om2uzlt2i |  |-  ( ( y e. _om /\ m e. _om ) -> ( y e. m <-> ( G ` y ) < ( G ` m ) ) ) | 
						
							| 56 | 54 55 | sylan2 |  |-  ( ( y e. _om /\ m e. ( `' G " A ) ) -> ( y e. m <-> ( G ` y ) < ( G ` m ) ) ) | 
						
							| 57 |  | breq2 |  |-  ( ( G ` m ) = n -> ( ( G ` y ) < ( G ` m ) <-> ( G ` y ) < n ) ) | 
						
							| 58 | 56 57 | sylan9bb |  |-  ( ( ( y e. _om /\ m e. ( `' G " A ) ) /\ ( G ` m ) = n ) -> ( y e. m <-> ( G ` y ) < n ) ) | 
						
							| 59 | 53 58 | syldan |  |-  ( ( ( y e. _om /\ m e. ( `' G " A ) ) /\ ( ( G |` ( `' G " A ) ) ` m ) = n ) -> ( y e. m <-> ( G ` y ) < n ) ) | 
						
							| 60 | 59 | biimparc |  |-  ( ( ( G ` y ) < n /\ ( ( y e. _om /\ m e. ( `' G " A ) ) /\ ( ( G |` ( `' G " A ) ) ` m ) = n ) ) -> y e. m ) | 
						
							| 61 | 60 | exp44 |  |-  ( ( G ` y ) < n -> ( y e. _om -> ( m e. ( `' G " A ) -> ( ( ( G |` ( `' G " A ) ) ` m ) = n -> y e. m ) ) ) ) | 
						
							| 62 | 61 | imp31 |  |-  ( ( ( ( G ` y ) < n /\ y e. _om ) /\ m e. ( `' G " A ) ) -> ( ( ( G |` ( `' G " A ) ) ` m ) = n -> y e. m ) ) | 
						
							| 63 | 62 | reximdva |  |-  ( ( ( G ` y ) < n /\ y e. _om ) -> ( E. m e. ( `' G " A ) ( ( G |` ( `' G " A ) ) ` m ) = n -> E. m e. ( `' G " A ) y e. m ) ) | 
						
							| 64 | 49 63 | syl5 |  |-  ( ( ( G ` y ) < n /\ y e. _om ) -> ( ( A C_ NN /\ n e. A ) -> E. m e. ( `' G " A ) y e. m ) ) | 
						
							| 65 | 64 | exp4b |  |-  ( ( G ` y ) < n -> ( y e. _om -> ( A C_ NN -> ( n e. A -> E. m e. ( `' G " A ) y e. m ) ) ) ) | 
						
							| 66 | 65 | com4l |  |-  ( y e. _om -> ( A C_ NN -> ( n e. A -> ( ( G ` y ) < n -> E. m e. ( `' G " A ) y e. m ) ) ) ) | 
						
							| 67 | 66 | imp |  |-  ( ( y e. _om /\ A C_ NN ) -> ( n e. A -> ( ( G ` y ) < n -> E. m e. ( `' G " A ) y e. m ) ) ) | 
						
							| 68 | 67 | rexlimdv |  |-  ( ( y e. _om /\ A C_ NN ) -> ( E. n e. A ( G ` y ) < n -> E. m e. ( `' G " A ) y e. m ) ) | 
						
							| 69 | 31 68 | syld |  |-  ( ( y e. _om /\ A C_ NN ) -> ( A. m e. NN E. n e. A m < n -> E. m e. ( `' G " A ) y e. m ) ) | 
						
							| 70 | 69 | ex |  |-  ( y e. _om -> ( A C_ NN -> ( A. m e. NN E. n e. A m < n -> E. m e. ( `' G " A ) y e. m ) ) ) | 
						
							| 71 | 70 | com3l |  |-  ( A C_ NN -> ( A. m e. NN E. n e. A m < n -> ( y e. _om -> E. m e. ( `' G " A ) y e. m ) ) ) | 
						
							| 72 | 71 | imp |  |-  ( ( A C_ NN /\ A. m e. NN E. n e. A m < n ) -> ( y e. _om -> E. m e. ( `' G " A ) y e. m ) ) | 
						
							| 73 | 72 | ralrimiv |  |-  ( ( A C_ NN /\ A. m e. NN E. n e. A m < n ) -> A. y e. _om E. m e. ( `' G " A ) y e. m ) | 
						
							| 74 |  | unbnn3 |  |-  ( ( ( `' G " A ) C_ _om /\ A. y e. _om E. m e. ( `' G " A ) y e. m ) -> ( `' G " A ) ~~ _om ) | 
						
							| 75 | 24 73 74 | sylancr |  |-  ( ( A C_ NN /\ A. m e. NN E. n e. A m < n ) -> ( `' G " A ) ~~ _om ) | 
						
							| 76 |  | entr |  |-  ( ( A ~~ ( `' G " A ) /\ ( `' G " A ) ~~ _om ) -> A ~~ _om ) | 
						
							| 77 | 17 75 76 | syl2anc |  |-  ( ( A C_ NN /\ A. m e. NN E. n e. A m < n ) -> A ~~ _om ) |