| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unirnmapsn.A |
|- ( ph -> A e. V ) |
| 2 |
|
unirnmapsn.b |
|- ( ph -> B e. W ) |
| 3 |
|
unirnmapsn.C |
|- C = { A } |
| 4 |
|
unirnmapsn.x |
|- ( ph -> X C_ ( B ^m C ) ) |
| 5 |
|
snex |
|- { A } e. _V |
| 6 |
3 5
|
eqeltri |
|- C e. _V |
| 7 |
6
|
a1i |
|- ( ph -> C e. _V ) |
| 8 |
7 4
|
unirnmap |
|- ( ph -> X C_ ( ran U. X ^m C ) ) |
| 9 |
|
simpl |
|- ( ( ph /\ g e. ( ran U. X ^m C ) ) -> ph ) |
| 10 |
|
equid |
|- g = g |
| 11 |
|
rnuni |
|- ran U. X = U_ f e. X ran f |
| 12 |
11
|
oveq1i |
|- ( ran U. X ^m C ) = ( U_ f e. X ran f ^m C ) |
| 13 |
10 12
|
eleq12i |
|- ( g e. ( ran U. X ^m C ) <-> g e. ( U_ f e. X ran f ^m C ) ) |
| 14 |
13
|
biimpi |
|- ( g e. ( ran U. X ^m C ) -> g e. ( U_ f e. X ran f ^m C ) ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ g e. ( ran U. X ^m C ) ) -> g e. ( U_ f e. X ran f ^m C ) ) |
| 16 |
|
ovexd |
|- ( ph -> ( B ^m C ) e. _V ) |
| 17 |
16 4
|
ssexd |
|- ( ph -> X e. _V ) |
| 18 |
|
rnexg |
|- ( f e. X -> ran f e. _V ) |
| 19 |
18
|
rgen |
|- A. f e. X ran f e. _V |
| 20 |
19
|
a1i |
|- ( ph -> A. f e. X ran f e. _V ) |
| 21 |
|
iunexg |
|- ( ( X e. _V /\ A. f e. X ran f e. _V ) -> U_ f e. X ran f e. _V ) |
| 22 |
17 20 21
|
syl2anc |
|- ( ph -> U_ f e. X ran f e. _V ) |
| 23 |
22 7
|
elmapd |
|- ( ph -> ( g e. ( U_ f e. X ran f ^m C ) <-> g : C --> U_ f e. X ran f ) ) |
| 24 |
23
|
biimpa |
|- ( ( ph /\ g e. ( U_ f e. X ran f ^m C ) ) -> g : C --> U_ f e. X ran f ) |
| 25 |
|
snidg |
|- ( A e. V -> A e. { A } ) |
| 26 |
1 25
|
syl |
|- ( ph -> A e. { A } ) |
| 27 |
26 3
|
eleqtrrdi |
|- ( ph -> A e. C ) |
| 28 |
27
|
adantr |
|- ( ( ph /\ g e. ( U_ f e. X ran f ^m C ) ) -> A e. C ) |
| 29 |
24 28
|
ffvelcdmd |
|- ( ( ph /\ g e. ( U_ f e. X ran f ^m C ) ) -> ( g ` A ) e. U_ f e. X ran f ) |
| 30 |
|
eliun |
|- ( ( g ` A ) e. U_ f e. X ran f <-> E. f e. X ( g ` A ) e. ran f ) |
| 31 |
29 30
|
sylib |
|- ( ( ph /\ g e. ( U_ f e. X ran f ^m C ) ) -> E. f e. X ( g ` A ) e. ran f ) |
| 32 |
9 15 31
|
syl2anc |
|- ( ( ph /\ g e. ( ran U. X ^m C ) ) -> E. f e. X ( g ` A ) e. ran f ) |
| 33 |
|
elmapfn |
|- ( g e. ( ran U. X ^m C ) -> g Fn C ) |
| 34 |
33
|
adantl |
|- ( ( ph /\ g e. ( ran U. X ^m C ) ) -> g Fn C ) |
| 35 |
|
simp3 |
|- ( ( ph /\ f e. X /\ ( g ` A ) e. ran f ) -> ( g ` A ) e. ran f ) |
| 36 |
1
|
3ad2ant1 |
|- ( ( ph /\ f e. X /\ ( g ` A ) e. ran f ) -> A e. V ) |
| 37 |
3
|
oveq2i |
|- ( B ^m C ) = ( B ^m { A } ) |
| 38 |
4 37
|
sseqtrdi |
|- ( ph -> X C_ ( B ^m { A } ) ) |
| 39 |
38
|
adantr |
|- ( ( ph /\ f e. X ) -> X C_ ( B ^m { A } ) ) |
| 40 |
|
simpr |
|- ( ( ph /\ f e. X ) -> f e. X ) |
| 41 |
39 40
|
sseldd |
|- ( ( ph /\ f e. X ) -> f e. ( B ^m { A } ) ) |
| 42 |
2
|
adantr |
|- ( ( ph /\ f e. X ) -> B e. W ) |
| 43 |
5
|
a1i |
|- ( ( ph /\ f e. X ) -> { A } e. _V ) |
| 44 |
42 43
|
elmapd |
|- ( ( ph /\ f e. X ) -> ( f e. ( B ^m { A } ) <-> f : { A } --> B ) ) |
| 45 |
41 44
|
mpbid |
|- ( ( ph /\ f e. X ) -> f : { A } --> B ) |
| 46 |
45
|
3adant3 |
|- ( ( ph /\ f e. X /\ ( g ` A ) e. ran f ) -> f : { A } --> B ) |
| 47 |
36 46
|
rnsnf |
|- ( ( ph /\ f e. X /\ ( g ` A ) e. ran f ) -> ran f = { ( f ` A ) } ) |
| 48 |
35 47
|
eleqtrd |
|- ( ( ph /\ f e. X /\ ( g ` A ) e. ran f ) -> ( g ` A ) e. { ( f ` A ) } ) |
| 49 |
|
fvex |
|- ( g ` A ) e. _V |
| 50 |
49
|
elsn |
|- ( ( g ` A ) e. { ( f ` A ) } <-> ( g ` A ) = ( f ` A ) ) |
| 51 |
48 50
|
sylib |
|- ( ( ph /\ f e. X /\ ( g ` A ) e. ran f ) -> ( g ` A ) = ( f ` A ) ) |
| 52 |
51
|
3adant1r |
|- ( ( ( ph /\ g Fn C ) /\ f e. X /\ ( g ` A ) e. ran f ) -> ( g ` A ) = ( f ` A ) ) |
| 53 |
1
|
adantr |
|- ( ( ph /\ g Fn C ) -> A e. V ) |
| 54 |
53
|
3ad2ant1 |
|- ( ( ( ph /\ g Fn C ) /\ f e. X /\ ( g ` A ) e. ran f ) -> A e. V ) |
| 55 |
|
simp1r |
|- ( ( ( ph /\ g Fn C ) /\ f e. X /\ ( g ` A ) e. ran f ) -> g Fn C ) |
| 56 |
41 37
|
eleqtrrdi |
|- ( ( ph /\ f e. X ) -> f e. ( B ^m C ) ) |
| 57 |
|
elmapfn |
|- ( f e. ( B ^m C ) -> f Fn C ) |
| 58 |
56 57
|
syl |
|- ( ( ph /\ f e. X ) -> f Fn C ) |
| 59 |
58
|
adantlr |
|- ( ( ( ph /\ g Fn C ) /\ f e. X ) -> f Fn C ) |
| 60 |
59
|
3adant3 |
|- ( ( ( ph /\ g Fn C ) /\ f e. X /\ ( g ` A ) e. ran f ) -> f Fn C ) |
| 61 |
54 3 55 60
|
fsneq |
|- ( ( ( ph /\ g Fn C ) /\ f e. X /\ ( g ` A ) e. ran f ) -> ( g = f <-> ( g ` A ) = ( f ` A ) ) ) |
| 62 |
52 61
|
mpbird |
|- ( ( ( ph /\ g Fn C ) /\ f e. X /\ ( g ` A ) e. ran f ) -> g = f ) |
| 63 |
|
simp2 |
|- ( ( ( ph /\ g Fn C ) /\ f e. X /\ ( g ` A ) e. ran f ) -> f e. X ) |
| 64 |
62 63
|
eqeltrd |
|- ( ( ( ph /\ g Fn C ) /\ f e. X /\ ( g ` A ) e. ran f ) -> g e. X ) |
| 65 |
64
|
3exp |
|- ( ( ph /\ g Fn C ) -> ( f e. X -> ( ( g ` A ) e. ran f -> g e. X ) ) ) |
| 66 |
9 34 65
|
syl2anc |
|- ( ( ph /\ g e. ( ran U. X ^m C ) ) -> ( f e. X -> ( ( g ` A ) e. ran f -> g e. X ) ) ) |
| 67 |
66
|
rexlimdv |
|- ( ( ph /\ g e. ( ran U. X ^m C ) ) -> ( E. f e. X ( g ` A ) e. ran f -> g e. X ) ) |
| 68 |
32 67
|
mpd |
|- ( ( ph /\ g e. ( ran U. X ^m C ) ) -> g e. X ) |
| 69 |
8 68
|
eqelssd |
|- ( ph -> X = ( ran U. X ^m C ) ) |