| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unirnmapsn.A |
|
| 2 |
|
unirnmapsn.b |
|
| 3 |
|
unirnmapsn.C |
|
| 4 |
|
unirnmapsn.x |
|
| 5 |
|
snex |
|
| 6 |
3 5
|
eqeltri |
|
| 7 |
6
|
a1i |
|
| 8 |
7 4
|
unirnmap |
|
| 9 |
|
simpl |
|
| 10 |
|
equid |
|
| 11 |
|
rnuni |
|
| 12 |
11
|
oveq1i |
|
| 13 |
10 12
|
eleq12i |
|
| 14 |
13
|
biimpi |
|
| 15 |
14
|
adantl |
|
| 16 |
|
ovexd |
|
| 17 |
16 4
|
ssexd |
|
| 18 |
|
rnexg |
|
| 19 |
18
|
rgen |
|
| 20 |
19
|
a1i |
|
| 21 |
|
iunexg |
|
| 22 |
17 20 21
|
syl2anc |
|
| 23 |
22 7
|
elmapd |
|
| 24 |
23
|
biimpa |
|
| 25 |
|
snidg |
|
| 26 |
1 25
|
syl |
|
| 27 |
26 3
|
eleqtrrdi |
|
| 28 |
27
|
adantr |
|
| 29 |
24 28
|
ffvelcdmd |
|
| 30 |
|
eliun |
|
| 31 |
29 30
|
sylib |
|
| 32 |
9 15 31
|
syl2anc |
|
| 33 |
|
elmapfn |
|
| 34 |
33
|
adantl |
|
| 35 |
|
simp3 |
|
| 36 |
1
|
3ad2ant1 |
|
| 37 |
3
|
oveq2i |
|
| 38 |
4 37
|
sseqtrdi |
|
| 39 |
38
|
adantr |
|
| 40 |
|
simpr |
|
| 41 |
39 40
|
sseldd |
|
| 42 |
2
|
adantr |
|
| 43 |
5
|
a1i |
|
| 44 |
42 43
|
elmapd |
|
| 45 |
41 44
|
mpbid |
|
| 46 |
45
|
3adant3 |
|
| 47 |
36 46
|
rnsnf |
|
| 48 |
35 47
|
eleqtrd |
|
| 49 |
|
fvex |
|
| 50 |
49
|
elsn |
|
| 51 |
48 50
|
sylib |
|
| 52 |
51
|
3adant1r |
|
| 53 |
1
|
adantr |
|
| 54 |
53
|
3ad2ant1 |
|
| 55 |
|
simp1r |
|
| 56 |
41 37
|
eleqtrrdi |
|
| 57 |
|
elmapfn |
|
| 58 |
56 57
|
syl |
|
| 59 |
58
|
adantlr |
|
| 60 |
59
|
3adant3 |
|
| 61 |
54 3 55 60
|
fsneq |
|
| 62 |
52 61
|
mpbird |
|
| 63 |
|
simp2 |
|
| 64 |
62 63
|
eqeltrd |
|
| 65 |
64
|
3exp |
|
| 66 |
9 34 65
|
syl2anc |
|
| 67 |
66
|
rexlimdv |
|
| 68 |
32 67
|
mpd |
|
| 69 |
8 68
|
eqelssd |
|