| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zorn2lem.3 |
|- F = recs ( ( f e. _V |-> ( iota_ v e. C A. u e. C -. u w v ) ) ) |
| 2 |
|
zorn2lem.4 |
|- C = { z e. A | A. g e. ran f g R z } |
| 3 |
|
zorn2lem.5 |
|- D = { z e. A | A. g e. ( F " x ) g R z } |
| 4 |
|
pm3.24 |
|- -. ( ran F e. _V /\ -. ran F e. _V ) |
| 5 |
|
df-ne |
|- ( D =/= (/) <-> -. D = (/) ) |
| 6 |
5
|
ralbii |
|- ( A. x e. On D =/= (/) <-> A. x e. On -. D = (/) ) |
| 7 |
|
df-ral |
|- ( A. x e. On D =/= (/) <-> A. x ( x e. On -> D =/= (/) ) ) |
| 8 |
|
ralnex |
|- ( A. x e. On -. D = (/) <-> -. E. x e. On D = (/) ) |
| 9 |
6 7 8
|
3bitr3i |
|- ( A. x ( x e. On -> D =/= (/) ) <-> -. E. x e. On D = (/) ) |
| 10 |
|
weso |
|- ( w We A -> w Or A ) |
| 11 |
10
|
adantr |
|- ( ( w We A /\ A. x ( x e. On -> D =/= (/) ) ) -> w Or A ) |
| 12 |
|
vex |
|- w e. _V |
| 13 |
|
soex |
|- ( ( w Or A /\ w e. _V ) -> A e. _V ) |
| 14 |
11 12 13
|
sylancl |
|- ( ( w We A /\ A. x ( x e. On -> D =/= (/) ) ) -> A e. _V ) |
| 15 |
1
|
tfr1 |
|- F Fn On |
| 16 |
|
fvelrnb |
|- ( F Fn On -> ( y e. ran F <-> E. x e. On ( F ` x ) = y ) ) |
| 17 |
15 16
|
ax-mp |
|- ( y e. ran F <-> E. x e. On ( F ` x ) = y ) |
| 18 |
|
nfv |
|- F/ x w We A |
| 19 |
|
nfa1 |
|- F/ x A. x ( x e. On -> D =/= (/) ) |
| 20 |
18 19
|
nfan |
|- F/ x ( w We A /\ A. x ( x e. On -> D =/= (/) ) ) |
| 21 |
|
nfv |
|- F/ x y e. A |
| 22 |
3
|
ssrab3 |
|- D C_ A |
| 23 |
1 2 3
|
zorn2lem1 |
|- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( F ` x ) e. D ) |
| 24 |
22 23
|
sselid |
|- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( F ` x ) e. A ) |
| 25 |
|
eleq1 |
|- ( ( F ` x ) = y -> ( ( F ` x ) e. A <-> y e. A ) ) |
| 26 |
24 25
|
syl5ibcom |
|- ( ( x e. On /\ ( w We A /\ D =/= (/) ) ) -> ( ( F ` x ) = y -> y e. A ) ) |
| 27 |
26
|
exp32 |
|- ( x e. On -> ( w We A -> ( D =/= (/) -> ( ( F ` x ) = y -> y e. A ) ) ) ) |
| 28 |
27
|
com12 |
|- ( w We A -> ( x e. On -> ( D =/= (/) -> ( ( F ` x ) = y -> y e. A ) ) ) ) |
| 29 |
28
|
a2d |
|- ( w We A -> ( ( x e. On -> D =/= (/) ) -> ( x e. On -> ( ( F ` x ) = y -> y e. A ) ) ) ) |
| 30 |
29
|
spsd |
|- ( w We A -> ( A. x ( x e. On -> D =/= (/) ) -> ( x e. On -> ( ( F ` x ) = y -> y e. A ) ) ) ) |
| 31 |
30
|
imp |
|- ( ( w We A /\ A. x ( x e. On -> D =/= (/) ) ) -> ( x e. On -> ( ( F ` x ) = y -> y e. A ) ) ) |
| 32 |
20 21 31
|
rexlimd |
|- ( ( w We A /\ A. x ( x e. On -> D =/= (/) ) ) -> ( E. x e. On ( F ` x ) = y -> y e. A ) ) |
| 33 |
17 32
|
biimtrid |
|- ( ( w We A /\ A. x ( x e. On -> D =/= (/) ) ) -> ( y e. ran F -> y e. A ) ) |
| 34 |
33
|
ssrdv |
|- ( ( w We A /\ A. x ( x e. On -> D =/= (/) ) ) -> ran F C_ A ) |
| 35 |
14 34
|
ssexd |
|- ( ( w We A /\ A. x ( x e. On -> D =/= (/) ) ) -> ran F e. _V ) |
| 36 |
35
|
ex |
|- ( w We A -> ( A. x ( x e. On -> D =/= (/) ) -> ran F e. _V ) ) |
| 37 |
36
|
adantl |
|- ( ( R Po A /\ w We A ) -> ( A. x ( x e. On -> D =/= (/) ) -> ran F e. _V ) ) |
| 38 |
1 2 3
|
zorn2lem3 |
|- ( ( R Po A /\ ( x e. On /\ ( w We A /\ D =/= (/) ) ) ) -> ( y e. x -> -. ( F ` x ) = ( F ` y ) ) ) |
| 39 |
38
|
exp45 |
|- ( R Po A -> ( x e. On -> ( w We A -> ( D =/= (/) -> ( y e. x -> -. ( F ` x ) = ( F ` y ) ) ) ) ) ) |
| 40 |
39
|
com23 |
|- ( R Po A -> ( w We A -> ( x e. On -> ( D =/= (/) -> ( y e. x -> -. ( F ` x ) = ( F ` y ) ) ) ) ) ) |
| 41 |
40
|
imp |
|- ( ( R Po A /\ w We A ) -> ( x e. On -> ( D =/= (/) -> ( y e. x -> -. ( F ` x ) = ( F ` y ) ) ) ) ) |
| 42 |
41
|
a2d |
|- ( ( R Po A /\ w We A ) -> ( ( x e. On -> D =/= (/) ) -> ( x e. On -> ( y e. x -> -. ( F ` x ) = ( F ` y ) ) ) ) ) |
| 43 |
42
|
imp4a |
|- ( ( R Po A /\ w We A ) -> ( ( x e. On -> D =/= (/) ) -> ( ( x e. On /\ y e. x ) -> -. ( F ` x ) = ( F ` y ) ) ) ) |
| 44 |
43
|
alrimdv |
|- ( ( R Po A /\ w We A ) -> ( ( x e. On -> D =/= (/) ) -> A. y ( ( x e. On /\ y e. x ) -> -. ( F ` x ) = ( F ` y ) ) ) ) |
| 45 |
44
|
alimdv |
|- ( ( R Po A /\ w We A ) -> ( A. x ( x e. On -> D =/= (/) ) -> A. x A. y ( ( x e. On /\ y e. x ) -> -. ( F ` x ) = ( F ` y ) ) ) ) |
| 46 |
|
r2al |
|- ( A. x e. On A. y e. x -. ( F ` x ) = ( F ` y ) <-> A. x A. y ( ( x e. On /\ y e. x ) -> -. ( F ` x ) = ( F ` y ) ) ) |
| 47 |
45 46
|
imbitrrdi |
|- ( ( R Po A /\ w We A ) -> ( A. x ( x e. On -> D =/= (/) ) -> A. x e. On A. y e. x -. ( F ` x ) = ( F ` y ) ) ) |
| 48 |
|
ssid |
|- On C_ On |
| 49 |
15
|
tz7.48lem |
|- ( ( On C_ On /\ A. x e. On A. y e. x -. ( F ` x ) = ( F ` y ) ) -> Fun `' ( F |` On ) ) |
| 50 |
48 49
|
mpan |
|- ( A. x e. On A. y e. x -. ( F ` x ) = ( F ` y ) -> Fun `' ( F |` On ) ) |
| 51 |
|
fnrel |
|- ( F Fn On -> Rel F ) |
| 52 |
15 51
|
ax-mp |
|- Rel F |
| 53 |
15
|
fndmi |
|- dom F = On |
| 54 |
53
|
eqimssi |
|- dom F C_ On |
| 55 |
|
relssres |
|- ( ( Rel F /\ dom F C_ On ) -> ( F |` On ) = F ) |
| 56 |
52 54 55
|
mp2an |
|- ( F |` On ) = F |
| 57 |
56
|
cnveqi |
|- `' ( F |` On ) = `' F |
| 58 |
57
|
funeqi |
|- ( Fun `' ( F |` On ) <-> Fun `' F ) |
| 59 |
50 58
|
sylib |
|- ( A. x e. On A. y e. x -. ( F ` x ) = ( F ` y ) -> Fun `' F ) |
| 60 |
47 59
|
syl6 |
|- ( ( R Po A /\ w We A ) -> ( A. x ( x e. On -> D =/= (/) ) -> Fun `' F ) ) |
| 61 |
|
onprc |
|- -. On e. _V |
| 62 |
|
funrnex |
|- ( dom `' F e. _V -> ( Fun `' F -> ran `' F e. _V ) ) |
| 63 |
62
|
com12 |
|- ( Fun `' F -> ( dom `' F e. _V -> ran `' F e. _V ) ) |
| 64 |
|
df-rn |
|- ran F = dom `' F |
| 65 |
64
|
eleq1i |
|- ( ran F e. _V <-> dom `' F e. _V ) |
| 66 |
|
dfdm4 |
|- dom F = ran `' F |
| 67 |
53 66
|
eqtr3i |
|- On = ran `' F |
| 68 |
67
|
eleq1i |
|- ( On e. _V <-> ran `' F e. _V ) |
| 69 |
63 65 68
|
3imtr4g |
|- ( Fun `' F -> ( ran F e. _V -> On e. _V ) ) |
| 70 |
61 69
|
mtoi |
|- ( Fun `' F -> -. ran F e. _V ) |
| 71 |
60 70
|
syl6 |
|- ( ( R Po A /\ w We A ) -> ( A. x ( x e. On -> D =/= (/) ) -> -. ran F e. _V ) ) |
| 72 |
37 71
|
jcad |
|- ( ( R Po A /\ w We A ) -> ( A. x ( x e. On -> D =/= (/) ) -> ( ran F e. _V /\ -. ran F e. _V ) ) ) |
| 73 |
9 72
|
biimtrrid |
|- ( ( R Po A /\ w We A ) -> ( -. E. x e. On D = (/) -> ( ran F e. _V /\ -. ran F e. _V ) ) ) |
| 74 |
4 73
|
mt3i |
|- ( ( R Po A /\ w We A ) -> E. x e. On D = (/) ) |