Metamath Proof Explorer


Theorem 0cnv

Description: If (/) is a complex number, then it converges to itself. See 0ncn and its comment; see also the comment in climlimsupcex . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion 0cnv

Proof

Step Hyp Ref Expression
1 id
2 0zd x+0
3 simpl x+
4 subid =0
5 4 fveq2d =0
6 abs0 0=0
7 6 a1i 0=0
8 5 7 eqtrd =0
9 8 adantr x+=0
10 rpgt0 x+0<x
11 10 adantl x+0<x
12 9 11 eqbrtrd x+<x
13 3 12 jca x+<x
14 13 ralrimivw x+k0<x
15 fveq2 m=0m=0
16 15 raleqdv m=0km<xk0<x
17 16 rspcev 0k0<xmkm<x
18 2 14 17 syl2anc x+mkm<x
19 18 ralrimiva x+mkm<x
20 1 19 jca x+mkm<x
21 0ex V
22 21 a1i V
23 0fv k=
24 23 a1i kk=
25 22 24 clim x+mkm<x
26 25 mptru x+mkm<x
27 20 26 sylibr