Metamath Proof Explorer


Theorem 0lmhm

Description: The constant zero linear function between two modules. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses 0lmhm.z 0˙=0N
0lmhm.b B=BaseM
0lmhm.s S=ScalarM
0lmhm.t T=ScalarN
Assertion 0lmhm MLModNLModS=TB×0˙MLMHomN

Proof

Step Hyp Ref Expression
1 0lmhm.z 0˙=0N
2 0lmhm.b B=BaseM
3 0lmhm.s S=ScalarM
4 0lmhm.t T=ScalarN
5 eqid M=M
6 eqid N=N
7 eqid BaseS=BaseS
8 simp1 MLModNLModS=TMLMod
9 simp2 MLModNLModS=TNLMod
10 simp3 MLModNLModS=TS=T
11 10 eqcomd MLModNLModS=TT=S
12 lmodgrp MLModMGrp
13 lmodgrp NLModNGrp
14 1 2 0ghm MGrpNGrpB×0˙MGrpHomN
15 12 13 14 syl2an MLModNLModB×0˙MGrpHomN
16 15 3adant3 MLModNLModS=TB×0˙MGrpHomN
17 simpl2 MLModNLModS=TxBaseSyBNLMod
18 simprl MLModNLModS=TxBaseSyBxBaseS
19 simpl3 MLModNLModS=TxBaseSyBS=T
20 19 fveq2d MLModNLModS=TxBaseSyBBaseS=BaseT
21 18 20 eleqtrd MLModNLModS=TxBaseSyBxBaseT
22 eqid BaseT=BaseT
23 4 6 22 1 lmodvs0 NLModxBaseTxN0˙=0˙
24 17 21 23 syl2anc MLModNLModS=TxBaseSyBxN0˙=0˙
25 1 fvexi 0˙V
26 25 fvconst2 yBB×0˙y=0˙
27 26 oveq2d yBxNB×0˙y=xN0˙
28 27 ad2antll MLModNLModS=TxBaseSyBxNB×0˙y=xN0˙
29 simpl1 MLModNLModS=TxBaseSyBMLMod
30 simprr MLModNLModS=TxBaseSyByB
31 2 3 5 7 lmodvscl MLModxBaseSyBxMyB
32 29 18 30 31 syl3anc MLModNLModS=TxBaseSyBxMyB
33 25 fvconst2 xMyBB×0˙xMy=0˙
34 32 33 syl MLModNLModS=TxBaseSyBB×0˙xMy=0˙
35 24 28 34 3eqtr4rd MLModNLModS=TxBaseSyBB×0˙xMy=xNB×0˙y
36 2 5 6 3 4 7 8 9 11 16 35 islmhmd MLModNLModS=TB×0˙MLMHomN