Description: In a ring, 0 = 1 iff the ring contains only 0 . (Contributed by Jeff Madsen, 6-Jan-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 0ring.1 | |
|
0ring.2 | |
||
0ring.3 | |
||
0ring.4 | |
||
0ring.5 | |
||
Assertion | 0rngo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ring.1 | |
|
2 | 0ring.2 | |
|
3 | 0ring.3 | |
|
4 | 0ring.4 | |
|
5 | 0ring.5 | |
|
6 | 4 | fvexi | |
7 | 6 | snid | |
8 | eleq1 | |
|
9 | 7 8 | mpbii | |
10 | 1 4 | 0idl | |
11 | 1 2 3 5 | 1idl | |
12 | 10 11 | mpdan | |
13 | 9 12 | imbitrid | |
14 | eqcom | |
|
15 | 13 14 | imbitrdi | |
16 | 1 | rneqi | |
17 | 3 16 | eqtri | |
18 | 17 2 5 | rngo1cl | |
19 | eleq2 | |
|
20 | elsni | |
|
21 | 20 | eqcomd | |
22 | 19 21 | syl6bi | |
23 | 18 22 | syl5com | |
24 | 15 23 | impbid | |