Metamath Proof Explorer


Theorem 0rngo

Description: In a ring, 0 = 1 iff the ring contains only 0 . (Contributed by Jeff Madsen, 6-Jan-2011)

Ref Expression
Hypotheses 0ring.1 G=1stR
0ring.2 H=2ndR
0ring.3 X=ranG
0ring.4 Z=GIdG
0ring.5 U=GIdH
Assertion 0rngo RRingOpsZ=UX=Z

Proof

Step Hyp Ref Expression
1 0ring.1 G=1stR
2 0ring.2 H=2ndR
3 0ring.3 X=ranG
4 0ring.4 Z=GIdG
5 0ring.5 U=GIdH
6 4 fvexi ZV
7 6 snid ZZ
8 eleq1 Z=UZZUZ
9 7 8 mpbii Z=UUZ
10 1 4 0idl RRingOpsZIdlR
11 1 2 3 5 1idl RRingOpsZIdlRUZZ=X
12 10 11 mpdan RRingOpsUZZ=X
13 9 12 imbitrid RRingOpsZ=UZ=X
14 eqcom Z=XX=Z
15 13 14 imbitrdi RRingOpsZ=UX=Z
16 1 rneqi ranG=ran1stR
17 3 16 eqtri X=ran1stR
18 17 2 5 rngo1cl RRingOpsUX
19 eleq2 X=ZUXUZ
20 elsni UZU=Z
21 20 eqcomd UZZ=U
22 19 21 syl6bi X=ZUXZ=U
23 18 22 syl5com RRingOpsX=ZZ=U
24 15 23 impbid RRingOpsZ=UX=Z