Metamath Proof Explorer


Theorem 0subgOLD

Description: Obsolete version of 0subg as of 31-Jan-2025. (Contributed by Stefan O'Rear, 10-Dec-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis 0subg.z 0˙=0G
Assertion 0subgOLD GGrp0˙SubGrpG

Proof

Step Hyp Ref Expression
1 0subg.z 0˙=0G
2 eqid BaseG=BaseG
3 2 1 grpidcl GGrp0˙BaseG
4 3 snssd GGrp0˙BaseG
5 1 fvexi 0˙V
6 5 snnz 0˙
7 6 a1i GGrp0˙
8 eqid +G=+G
9 2 8 1 grplid GGrp0˙BaseG0˙+G0˙=0˙
10 3 9 mpdan GGrp0˙+G0˙=0˙
11 ovex 0˙+G0˙V
12 11 elsn 0˙+G0˙0˙0˙+G0˙=0˙
13 10 12 sylibr GGrp0˙+G0˙0˙
14 eqid invgG=invgG
15 1 14 grpinvid GGrpinvgG0˙=0˙
16 fvex invgG0˙V
17 16 elsn invgG0˙0˙invgG0˙=0˙
18 15 17 sylibr GGrpinvgG0˙0˙
19 oveq1 a=0˙a+Gb=0˙+Gb
20 19 eleq1d a=0˙a+Gb0˙0˙+Gb0˙
21 20 ralbidv a=0˙b0˙a+Gb0˙b0˙0˙+Gb0˙
22 oveq2 b=0˙0˙+Gb=0˙+G0˙
23 22 eleq1d b=0˙0˙+Gb0˙0˙+G0˙0˙
24 5 23 ralsn b0˙0˙+Gb0˙0˙+G0˙0˙
25 21 24 bitrdi a=0˙b0˙a+Gb0˙0˙+G0˙0˙
26 fveq2 a=0˙invgGa=invgG0˙
27 26 eleq1d a=0˙invgGa0˙invgG0˙0˙
28 25 27 anbi12d a=0˙b0˙a+Gb0˙invgGa0˙0˙+G0˙0˙invgG0˙0˙
29 5 28 ralsn a0˙b0˙a+Gb0˙invgGa0˙0˙+G0˙0˙invgG0˙0˙
30 13 18 29 sylanbrc GGrpa0˙b0˙a+Gb0˙invgGa0˙
31 2 8 14 issubg2 GGrp0˙SubGrpG0˙BaseG0˙a0˙b0˙a+Gb0˙invgGa0˙
32 4 7 30 31 mpbir3and GGrp0˙SubGrpG