Description: Lemma for 1arith . (Contributed by Mario Carneiro, 30-May-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 1arith.1 | |
|
1arithlem4.2 | |
||
1arithlem4.3 | |
||
1arithlem4.4 | |
||
1arithlem4.5 | |
||
Assertion | 1arithlem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1arith.1 | |
|
2 | 1arithlem4.2 | |
|
3 | 1arithlem4.3 | |
|
4 | 1arithlem4.4 | |
|
5 | 1arithlem4.5 | |
|
6 | 3 | ffvelcdmda | |
7 | 6 | ralrimiva | |
8 | 2 7 | pcmptcl | |
9 | 8 | simprd | |
10 | 9 4 | ffvelcdmd | |
11 | 1 | 1arithlem2 | |
12 | 10 11 | sylan | |
13 | 7 | adantr | |
14 | 4 | adantr | |
15 | simpr | |
|
16 | fveq2 | |
|
17 | 2 13 14 15 16 | pcmpt | |
18 | 14 | nnred | |
19 | prmz | |
|
20 | 19 | zred | |
21 | 20 | adantl | |
22 | 5 | anassrs | |
23 | 22 | ifeq2d | |
24 | ifid | |
|
25 | 23 24 | eqtr3di | |
26 | iftrue | |
|
27 | 26 | adantl | |
28 | 18 21 25 27 | lecasei | |
29 | 12 17 28 | 3eqtrrd | |
30 | 29 | ralrimiva | |
31 | 1 | 1arithlem3 | |
32 | 10 31 | syl | |
33 | ffn | |
|
34 | ffn | |
|
35 | eqfnfv | |
|
36 | 33 34 35 | syl2an | |
37 | 3 32 36 | syl2anc | |
38 | 30 37 | mpbird | |
39 | fveq2 | |
|
40 | 39 | rspceeqv | |
41 | 10 38 40 | syl2anc | |