Metamath Proof Explorer


Theorem 2sqlem8a

Description: Lemma for 2sqlem8 . (Contributed by Mario Carneiro, 4-Jun-2016)

Ref Expression
Hypotheses 2sq.1 S=ranwiw2
2sqlem7.2 Y=z|xyxgcdy=1z=x2+y2
2sqlem9.5 φb1M1aYbabS
2sqlem9.7 φMN
2sqlem8.n φN
2sqlem8.m φM2
2sqlem8.1 φA
2sqlem8.2 φB
2sqlem8.3 φAgcdB=1
2sqlem8.4 φN=A2+B2
2sqlem8.c C=A+M2modMM2
2sqlem8.d D=B+M2modMM2
Assertion 2sqlem8a φCgcdD

Proof

Step Hyp Ref Expression
1 2sq.1 S=ranwiw2
2 2sqlem7.2 Y=z|xyxgcdy=1z=x2+y2
3 2sqlem9.5 φb1M1aYbabS
4 2sqlem9.7 φMN
5 2sqlem8.n φN
6 2sqlem8.m φM2
7 2sqlem8.1 φA
8 2sqlem8.2 φB
9 2sqlem8.3 φAgcdB=1
10 2sqlem8.4 φN=A2+B2
11 2sqlem8.c C=A+M2modMM2
12 2sqlem8.d D=B+M2modMM2
13 eluz2b3 M2MM1
14 6 13 sylib φMM1
15 14 simpld φM
16 7 15 11 4sqlem5 φCACM
17 16 simpld φC
18 8 15 12 4sqlem5 φDBDM
19 18 simpld φD
20 14 simprd φM1
21 simpr φC2=0C2=0
22 7 15 11 21 4sqlem9 φC2=0M2A2
23 22 ex φC2=0M2A2
24 eluzelz M2M
25 6 24 syl φM
26 dvdssq MAMAM2A2
27 25 7 26 syl2anc φMAM2A2
28 23 27 sylibrd φC2=0MA
29 simpr φD2=0D2=0
30 8 15 12 29 4sqlem9 φD2=0M2B2
31 30 ex φD2=0M2B2
32 dvdssq MBMBM2B2
33 25 8 32 syl2anc φMBM2B2
34 31 33 sylibrd φD2=0MB
35 ax-1ne0 10
36 35 a1i φ10
37 9 36 eqnetrd φAgcdB0
38 37 neneqd φ¬AgcdB=0
39 gcdeq0 ABAgcdB=0A=0B=0
40 7 8 39 syl2anc φAgcdB=0A=0B=0
41 38 40 mtbid φ¬A=0B=0
42 dvdslegcd MAB¬A=0B=0MAMBMAgcdB
43 25 7 8 41 42 syl31anc φMAMBMAgcdB
44 28 34 43 syl2and φC2=0D2=0MAgcdB
45 9 breq2d φMAgcdBM1
46 nnle1eq1 MM1M=1
47 15 46 syl φM1M=1
48 45 47 bitrd φMAgcdBM=1
49 44 48 sylibd φC2=0D2=0M=1
50 49 necon3ad φM1¬C2=0D2=0
51 20 50 mpd φ¬C2=0D2=0
52 17 zcnd φC
53 sqeq0 CC2=0C=0
54 52 53 syl φC2=0C=0
55 19 zcnd φD
56 sqeq0 DD2=0D=0
57 55 56 syl φD2=0D=0
58 54 57 anbi12d φC2=0D2=0C=0D=0
59 51 58 mtbid φ¬C=0D=0
60 gcdn0cl CD¬C=0D=0CgcdD
61 17 19 59 60 syl21anc φCgcdD