Description: Lemma for 2sqlem8 . (Contributed by Mario Carneiro, 4-Jun-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2sq.1 | |
|
2sqlem7.2 | |
||
2sqlem9.5 | |
||
2sqlem9.7 | |
||
2sqlem8.n | |
||
2sqlem8.m | |
||
2sqlem8.1 | |
||
2sqlem8.2 | |
||
2sqlem8.3 | |
||
2sqlem8.4 | |
||
2sqlem8.c | |
||
2sqlem8.d | |
||
Assertion | 2sqlem8a | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sq.1 | |
|
2 | 2sqlem7.2 | |
|
3 | 2sqlem9.5 | |
|
4 | 2sqlem9.7 | |
|
5 | 2sqlem8.n | |
|
6 | 2sqlem8.m | |
|
7 | 2sqlem8.1 | |
|
8 | 2sqlem8.2 | |
|
9 | 2sqlem8.3 | |
|
10 | 2sqlem8.4 | |
|
11 | 2sqlem8.c | |
|
12 | 2sqlem8.d | |
|
13 | eluz2b3 | |
|
14 | 6 13 | sylib | |
15 | 14 | simpld | |
16 | 7 15 11 | 4sqlem5 | |
17 | 16 | simpld | |
18 | 8 15 12 | 4sqlem5 | |
19 | 18 | simpld | |
20 | 14 | simprd | |
21 | simpr | |
|
22 | 7 15 11 21 | 4sqlem9 | |
23 | 22 | ex | |
24 | eluzelz | |
|
25 | 6 24 | syl | |
26 | dvdssq | |
|
27 | 25 7 26 | syl2anc | |
28 | 23 27 | sylibrd | |
29 | simpr | |
|
30 | 8 15 12 29 | 4sqlem9 | |
31 | 30 | ex | |
32 | dvdssq | |
|
33 | 25 8 32 | syl2anc | |
34 | 31 33 | sylibrd | |
35 | ax-1ne0 | |
|
36 | 35 | a1i | |
37 | 9 36 | eqnetrd | |
38 | 37 | neneqd | |
39 | gcdeq0 | |
|
40 | 7 8 39 | syl2anc | |
41 | 38 40 | mtbid | |
42 | dvdslegcd | |
|
43 | 25 7 8 41 42 | syl31anc | |
44 | 28 34 43 | syl2and | |
45 | 9 | breq2d | |
46 | nnle1eq1 | |
|
47 | 15 46 | syl | |
48 | 45 47 | bitrd | |
49 | 44 48 | sylibd | |
50 | 49 | necon3ad | |
51 | 20 50 | mpd | |
52 | 17 | zcnd | |
53 | sqeq0 | |
|
54 | 52 53 | syl | |
55 | 19 | zcnd | |
56 | sqeq0 | |
|
57 | 55 56 | syl | |
58 | 54 57 | anbi12d | |
59 | 51 58 | mtbid | |
60 | gcdn0cl | |
|
61 | 17 19 59 60 | syl21anc | |