Metamath Proof Explorer


Theorem 2zrngnmrid

Description: R has no multiplicative (right) identity. (Contributed by AV, 12-Feb-2020)

Ref Expression
Hypotheses 2zrng.e E=z|xz=2x
2zrngbas.r R=fld𝑠E
2zrngmmgm.1 M=mulGrpR
Assertion 2zrngnmrid aE0bEaba

Proof

Step Hyp Ref Expression
1 2zrng.e E=z|xz=2x
2 2zrngbas.r R=fld𝑠E
3 2zrngmmgm.1 M=mulGrpR
4 eldifsn aE0aEa0
5 eqeq1 z=az=2xa=2x
6 5 rexbidv z=axz=2xxa=2x
7 6 1 elrab2 aEaxa=2x
8 zcn aa
9 8 adantr axa=2xa
10 7 9 sylbi aEa
11 10 anim1i aEa0aa0
12 4 11 sylbi aE0aa0
13 eqeq1 z=bz=2xb=2x
14 13 rexbidv z=bxz=2xxb=2x
15 14 1 elrab2 bEbxb=2x
16 zcn bb
17 16 adantr bxb=2xb
18 15 17 sylbi bEb
19 18 ancli bEbEb
20 1 1neven 1E
21 elnelne2 bE1Eb1
22 20 21 mpan2 bEb1
23 22 ad2antrl aa0bEbb1
24 simpr bEbb
25 24 anim2i aa0bEbaa0b
26 3anass baa0baa0
27 ancom baa0aa0b
28 26 27 bitri baa0aa0b
29 25 28 sylibr aa0bEbbaa0
30 divcan3 baa0aba=b
31 29 30 syl aa0bEbaba=b
32 divid aa0aa=1
33 32 adantr aa0bEbaa=1
34 23 31 33 3netr4d aa0bEbabaaa
35 simpl aa0a
36 mulcl abab
37 35 24 36 syl2an aa0bEbab
38 35 adantr aa0bEba
39 simpl aa0bEbaa0
40 div11 abaaa0aba=aaab=a
41 37 38 39 40 syl3anc aa0bEbaba=aaab=a
42 41 biimprd aa0bEbab=aaba=aa
43 42 necon3d aa0bEbabaaaaba
44 34 43 mpd aa0bEbaba
45 12 19 44 syl2an aE0bEaba
46 45 rgen2 aE0bEaba