| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2zrng.e |
|
| 2 |
|
2zrngbas.r |
|
| 3 |
|
2zrngmmgm.1 |
|
| 4 |
|
eldifsn |
|
| 5 |
|
eqeq1 |
|
| 6 |
5
|
rexbidv |
|
| 7 |
6 1
|
elrab2 |
|
| 8 |
|
zcn |
|
| 9 |
8
|
adantr |
|
| 10 |
7 9
|
sylbi |
|
| 11 |
10
|
anim1i |
|
| 12 |
4 11
|
sylbi |
|
| 13 |
|
eqeq1 |
|
| 14 |
13
|
rexbidv |
|
| 15 |
14 1
|
elrab2 |
|
| 16 |
|
zcn |
|
| 17 |
16
|
adantr |
|
| 18 |
15 17
|
sylbi |
|
| 19 |
18
|
ancli |
|
| 20 |
1
|
1neven |
|
| 21 |
|
elnelne2 |
|
| 22 |
20 21
|
mpan2 |
|
| 23 |
22
|
ad2antrl |
|
| 24 |
|
simpr |
|
| 25 |
24
|
anim2i |
|
| 26 |
|
3anass |
|
| 27 |
|
ancom |
|
| 28 |
26 27
|
bitri |
|
| 29 |
25 28
|
sylibr |
|
| 30 |
|
divcan3 |
|
| 31 |
29 30
|
syl |
|
| 32 |
|
divid |
|
| 33 |
32
|
adantr |
|
| 34 |
23 31 33
|
3netr4d |
|
| 35 |
|
simpl |
|
| 36 |
|
mulcl |
|
| 37 |
35 24 36
|
syl2an |
|
| 38 |
35
|
adantr |
|
| 39 |
|
simpl |
|
| 40 |
|
div11 |
|
| 41 |
37 38 39 40
|
syl3anc |
|
| 42 |
41
|
biimprd |
|
| 43 |
42
|
necon3d |
|
| 44 |
34 43
|
mpd |
|
| 45 |
12 19 44
|
syl2an |
|
| 46 |
45
|
rgen2 |
|