Metamath Proof Explorer


Theorem 3factsumint3

Description: Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024)

Ref Expression
Hypotheses 3factsumint3.1 A=LU
3factsumint3.2 φL
3factsumint3.3 φU
3factsumint3.4 φxAF
3factsumint3.5 φxAF:Acn
3factsumint3.6 φkBG
3factsumint3.7 φxAkBH
3factsumint3.8 φkBxAH:Acn
Assertion 3factsumint3 φkBAGFHdx=kBGAFHdx

Proof

Step Hyp Ref Expression
1 3factsumint3.1 A=LU
2 3factsumint3.2 φL
3 3factsumint3.3 φU
4 3factsumint3.4 φxAF
5 3factsumint3.5 φxAF:Acn
6 3factsumint3.6 φkBG
7 3factsumint3.7 φxAkBH
8 3factsumint3.8 φkBxAH:Acn
9 4 adantlr φkBxAF
10 ancom xAkBkBxA
11 10 anbi2i φxAkBφkBxA
12 anass φkBxAφkBxA
13 12 bicomi φkBxAφkBxA
14 11 13 bitri φxAkBφkBxA
15 14 imbi1i φxAkBHφkBxAH
16 7 15 mpbi φkBxAH
17 9 16 mulcld φkBxAFH
18 2 adantr φkBL
19 3 adantr φkBU
20 5 adantr φkBxAF:Acn
21 20 8 mulcncf φkBxAFH:Acn
22 1 oveq1i Acn=LUcn
23 21 22 eleqtrdi φkBxAFH:LUcn
24 cnicciblnc LUxAFH:LUcnxAFH𝐿1
25 18 19 23 24 syl3anc φkBxAFH𝐿1
26 6 17 25 itgmulc2 φkBGAFHdx=AGFHdx
27 26 eqcomd φkBAGFHdx=GAFHdx
28 27 sumeq2dv φkBAGFHdx=kBGAFHdx