| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4thatlem.ph |
|
| 2 |
|
4thatlem0.l |
|
| 3 |
|
4thatlem0.j |
|
| 4 |
|
4thatlem0.m |
|
| 5 |
|
4thatlem0.a |
|
| 6 |
|
4thatlem0.h |
|
| 7 |
|
4thatlem0.u |
|
| 8 |
|
4thatlem0.v |
|
| 9 |
|
eqid |
|
| 10 |
1
|
4atexlemkl |
|
| 11 |
1
|
4atexlemt |
|
| 12 |
9 5
|
atbase |
|
| 13 |
11 12
|
syl |
|
| 14 |
1
|
4atexlemk |
|
| 15 |
1 2 3 4 5 6 7
|
4atexlemu |
|
| 16 |
1 2 3 4 5 6 7 8
|
4atexlemv |
|
| 17 |
9 3 5
|
hlatjcl |
|
| 18 |
14 15 16 17
|
syl3anc |
|
| 19 |
1 6
|
4atexlemwb |
|
| 20 |
1
|
4atexlemkc |
|
| 21 |
1 2 3 4 5 6 7 8
|
4atexlemunv |
|
| 22 |
1
|
4atexlemutvt |
|
| 23 |
5 2 3
|
cvlsupr4 |
|
| 24 |
20 15 16 11 21 22 23
|
syl132anc |
|
| 25 |
1
|
4atexlemp |
|
| 26 |
1
|
4atexlemq |
|
| 27 |
9 3 5
|
hlatjcl |
|
| 28 |
14 25 26 27
|
syl3anc |
|
| 29 |
9 2 4
|
latmle2 |
|
| 30 |
10 28 19 29
|
syl3anc |
|
| 31 |
7 30
|
eqbrtrid |
|
| 32 |
1 3 5
|
4atexlempsb |
|
| 33 |
9 2 4
|
latmle2 |
|
| 34 |
10 32 19 33
|
syl3anc |
|
| 35 |
8 34
|
eqbrtrid |
|
| 36 |
9 5
|
atbase |
|
| 37 |
15 36
|
syl |
|
| 38 |
9 5
|
atbase |
|
| 39 |
16 38
|
syl |
|
| 40 |
9 2 3
|
latjle12 |
|
| 41 |
10 37 39 19 40
|
syl13anc |
|
| 42 |
31 35 41
|
mpbi2and |
|
| 43 |
9 2 10 13 18 19 24 42
|
lattrd |
|