Metamath Proof Explorer


Theorem 4noncolr3

Description: A way to express 4 non-colinear atoms (rotated right 3 places). (Contributed by NM, 11-Jul-2012)

Ref Expression
Hypotheses 3noncol.l ˙=K
3noncol.j ˙=joinK
3noncol.a A=AtomsK
Assertion 4noncolr3 KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RQR¬S˙Q˙R¬P˙Q˙R˙S

Proof

Step Hyp Ref Expression
1 3noncol.l ˙=K
2 3noncol.j ˙=joinK
3 3noncol.a A=AtomsK
4 simp11 KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RKHL
5 4 hllatd KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RKLat
6 simp2l KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RRA
7 eqid BaseK=BaseK
8 7 3 atbase RARBaseK
9 6 8 syl KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RRBaseK
10 simp12 KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RPA
11 7 3 atbase PAPBaseK
12 10 11 syl KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RPBaseK
13 simp13 KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RQA
14 7 3 atbase QAQBaseK
15 13 14 syl KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RQBaseK
16 simp32 KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙R¬R˙P˙Q
17 7 1 2 latnlej1r KLatRBaseKPBaseKQBaseK¬R˙P˙QRQ
18 5 9 12 15 16 17 syl131anc KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RRQ
19 18 necomd KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RQR
20 simp2r KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RSA
21 7 3 atbase SASBaseK
22 20 21 syl KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RSBaseK
23 7 2 latjcl KLatQBaseKRBaseKQ˙RBaseK
24 5 15 9 23 syl3anc KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RQ˙RBaseK
25 simp33 KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙R¬S˙P˙Q˙R
26 2 3 hlatjass KHLPAQARAP˙Q˙R=P˙Q˙R
27 4 10 13 6 26 syl13anc KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙R=P˙Q˙R
28 27 breq2d KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RS˙P˙Q˙RS˙P˙Q˙R
29 25 28 mtbid KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙R¬S˙P˙Q˙R
30 7 1 2 latnlej2r KLatSBaseKPBaseKQ˙RBaseK¬S˙P˙Q˙R¬S˙Q˙R
31 5 22 12 24 29 30 syl131anc KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙R¬S˙Q˙R
32 simp31 KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RPQ
33 1 2 3 hlatexch1 KHLPARAQAPQP˙Q˙RR˙Q˙P
34 4 10 6 13 32 33 syl131anc KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙RR˙Q˙P
35 7 2 latjcom KLatPBaseKQBaseKP˙Q=Q˙P
36 5 12 15 35 syl3anc KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q=Q˙P
37 36 breq2d KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RR˙P˙QR˙Q˙P
38 34 37 sylibrd KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙RR˙P˙Q
39 16 38 mtod KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙Q˙R
40 7 1 2 3 hlexch1 KHLPASAQ˙RBaseK¬P˙Q˙RP˙Q˙R˙SS˙Q˙R˙P
41 4 10 20 24 39 40 syl131anc KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙R˙SS˙Q˙R˙P
42 7 2 latjcom KLatQBaseKRBaseKQ˙R=R˙Q
43 5 15 9 42 syl3anc KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RQ˙R=R˙Q
44 43 oveq1d KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RQ˙R˙P=R˙Q˙P
45 7 2 latj31 KLatRBaseKQBaseKPBaseKR˙Q˙P=P˙Q˙R
46 5 9 15 12 45 syl13anc KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RR˙Q˙P=P˙Q˙R
47 44 46 eqtrd KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RQ˙R˙P=P˙Q˙R
48 47 breq2d KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RS˙Q˙R˙PS˙P˙Q˙R
49 41 48 sylibd KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RP˙Q˙R˙SS˙P˙Q˙R
50 25 49 mtod KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙R¬P˙Q˙R˙S
51 19 31 50 3jca KHLPAQARASAPQ¬R˙P˙Q¬S˙P˙Q˙RQR¬S˙Q˙R¬P˙Q˙R˙S