Description: Lemma for 4sq . Inductive step, odd prime case. (Contributed by Mario Carneiro, 16-Jul-2014) (Revised by AV, 14-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 4sq.1 | |
|
4sq.2 | |
||
4sq.3 | |
||
4sq.4 | |
||
4sq.5 | |
||
4sq.6 | |
||
4sq.7 | |
||
Assertion | 4sqlem18 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sq.1 | |
|
2 | 4sq.2 | |
|
3 | 4sq.3 | |
|
4 | 4sq.4 | |
|
5 | 4sq.5 | |
|
6 | 4sq.6 | |
|
7 | 4sq.7 | |
|
8 | prmnn | |
|
9 | 4 8 | syl | |
10 | 9 | nncnd | |
11 | 10 | mullidd | |
12 | 6 | ssrab3 | |
13 | nnuz | |
|
14 | 12 13 | sseqtri | |
15 | 1 2 3 4 5 6 7 | 4sqlem13 | |
16 | 15 | simpld | |
17 | infssuzcl | |
|
18 | 14 16 17 | sylancr | |
19 | 7 18 | eqeltrid | |
20 | oveq1 | |
|
21 | 20 | eleq1d | |
22 | 21 6 | elrab2 | |
23 | 19 22 | sylib | |
24 | 23 | simprd | |
25 | 1 | 4sqlem2 | |
26 | 24 25 | sylib | |
27 | 26 | adantr | |
28 | simp1l | |
|
29 | 28 2 | syl | |
30 | 28 3 | syl | |
31 | 28 4 | syl | |
32 | 28 5 | syl | |
33 | simp1r | |
|
34 | simp2ll | |
|
35 | simp2lr | |
|
36 | simp2rl | |
|
37 | simp2rr | |
|
38 | eqid | |
|
39 | eqid | |
|
40 | eqid | |
|
41 | eqid | |
|
42 | eqid | |
|
43 | simp3 | |
|
44 | 1 29 30 31 32 6 7 33 34 35 36 37 38 39 40 41 42 43 | 4sqlem17 | |
45 | 44 | pm2.21i | |
46 | 45 | 3expia | |
47 | 46 | anassrs | |
48 | 47 | rexlimdvva | |
49 | 48 | rexlimdvva | |
50 | 27 49 | mpd | |
51 | 50 | pm2.01da | |
52 | 23 | simpld | |
53 | elnn1uz2 | |
|
54 | 52 53 | sylib | |
55 | 54 | ord | |
56 | 51 55 | mt3d | |
57 | 56 19 | eqeltrrd | |
58 | oveq1 | |
|
59 | 58 | eleq1d | |
60 | 59 6 | elrab2 | |
61 | 60 | simprbi | |
62 | 57 61 | syl | |
63 | 11 62 | eqeltrrd | |