Metamath Proof Explorer


Theorem 4sqlem18

Description: Lemma for 4sq . Inductive step, odd prime case. (Contributed by Mario Carneiro, 16-Jul-2014) (Revised by AV, 14-Sep-2020)

Ref Expression
Hypotheses 4sq.1 S=n|xyzwn=x2+y2+z2+w2
4sq.2 φN
4sq.3 φP=2 N+1
4sq.4 φP
4sq.5 φ02 NS
4sq.6 T=i|iPS
4sq.7 M=supT<
Assertion 4sqlem18 φPS

Proof

Step Hyp Ref Expression
1 4sq.1 S=n|xyzwn=x2+y2+z2+w2
2 4sq.2 φN
3 4sq.3 φP=2 N+1
4 4sq.4 φP
5 4sq.5 φ02 NS
6 4sq.6 T=i|iPS
7 4sq.7 M=supT<
8 prmnn PP
9 4 8 syl φP
10 9 nncnd φP
11 10 mullidd φ1P=P
12 6 ssrab3 T
13 nnuz =1
14 12 13 sseqtri T1
15 1 2 3 4 5 6 7 4sqlem13 φTM<P
16 15 simpld φT
17 infssuzcl T1TsupT<T
18 14 16 17 sylancr φsupT<T
19 7 18 eqeltrid φMT
20 oveq1 i=MiP=MP
21 20 eleq1d i=MiPSMPS
22 21 6 elrab2 MTMMPS
23 19 22 sylib φMMPS
24 23 simprd φMPS
25 1 4sqlem2 MPSabcdMP=a2+b2+c2+d2
26 24 25 sylib φabcdMP=a2+b2+c2+d2
27 26 adantr φM2abcdMP=a2+b2+c2+d2
28 simp1l φM2abcdMP=a2+b2+c2+d2φ
29 28 2 syl φM2abcdMP=a2+b2+c2+d2N
30 28 3 syl φM2abcdMP=a2+b2+c2+d2P=2 N+1
31 28 4 syl φM2abcdMP=a2+b2+c2+d2P
32 28 5 syl φM2abcdMP=a2+b2+c2+d202 NS
33 simp1r φM2abcdMP=a2+b2+c2+d2M2
34 simp2ll φM2abcdMP=a2+b2+c2+d2a
35 simp2lr φM2abcdMP=a2+b2+c2+d2b
36 simp2rl φM2abcdMP=a2+b2+c2+d2c
37 simp2rr φM2abcdMP=a2+b2+c2+d2d
38 eqid a+M2modMM2=a+M2modMM2
39 eqid b+M2modMM2=b+M2modMM2
40 eqid c+M2modMM2=c+M2modMM2
41 eqid d+M2modMM2=d+M2modMM2
42 eqid a+M2modMM22+b+M2modMM22+c+M2modMM22+d+M2modMM22M=a+M2modMM22+b+M2modMM22+c+M2modMM22+d+M2modMM22M
43 simp3 φM2abcdMP=a2+b2+c2+d2MP=a2+b2+c2+d2
44 1 29 30 31 32 6 7 33 34 35 36 37 38 39 40 41 42 43 4sqlem17 ¬φM2abcdMP=a2+b2+c2+d2
45 44 pm2.21i φM2abcdMP=a2+b2+c2+d2¬M2
46 45 3expia φM2abcdMP=a2+b2+c2+d2¬M2
47 46 anassrs φM2abcdMP=a2+b2+c2+d2¬M2
48 47 rexlimdvva φM2abcdMP=a2+b2+c2+d2¬M2
49 48 rexlimdvva φM2abcdMP=a2+b2+c2+d2¬M2
50 27 49 mpd φM2¬M2
51 50 pm2.01da φ¬M2
52 23 simpld φM
53 elnn1uz2 MM=1M2
54 52 53 sylib φM=1M2
55 54 ord φ¬M=1M2
56 51 55 mt3d φM=1
57 56 19 eqeltrrd φ1T
58 oveq1 i=1iP=1P
59 58 eleq1d i=1iPS1PS
60 59 6 elrab2 1T11PS
61 60 simprbi 1T1PS
62 57 61 syl φ1PS
63 11 62 eqeltrrd φPS