| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 4sq.1 |  | 
						
							| 2 |  | 4sq.2 |  | 
						
							| 3 |  | 4sq.3 |  | 
						
							| 4 |  | 4sq.4 |  | 
						
							| 5 |  | 4sq.5 |  | 
						
							| 6 |  | 4sq.6 |  | 
						
							| 7 |  | 4sq.7 |  | 
						
							| 8 |  | prmnn |  | 
						
							| 9 | 4 8 | syl |  | 
						
							| 10 | 9 | nncnd |  | 
						
							| 11 | 10 | mullidd |  | 
						
							| 12 | 6 | ssrab3 |  | 
						
							| 13 |  | nnuz |  | 
						
							| 14 | 12 13 | sseqtri |  | 
						
							| 15 | 1 2 3 4 5 6 7 | 4sqlem13 |  | 
						
							| 16 | 15 | simpld |  | 
						
							| 17 |  | infssuzcl |  | 
						
							| 18 | 14 16 17 | sylancr |  | 
						
							| 19 | 7 18 | eqeltrid |  | 
						
							| 20 |  | oveq1 |  | 
						
							| 21 | 20 | eleq1d |  | 
						
							| 22 | 21 6 | elrab2 |  | 
						
							| 23 | 19 22 | sylib |  | 
						
							| 24 | 23 | simprd |  | 
						
							| 25 | 1 | 4sqlem2 |  | 
						
							| 26 | 24 25 | sylib |  | 
						
							| 27 | 26 | adantr |  | 
						
							| 28 |  | simp1l |  | 
						
							| 29 | 28 2 | syl |  | 
						
							| 30 | 28 3 | syl |  | 
						
							| 31 | 28 4 | syl |  | 
						
							| 32 | 28 5 | syl |  | 
						
							| 33 |  | simp1r |  | 
						
							| 34 |  | simp2ll |  | 
						
							| 35 |  | simp2lr |  | 
						
							| 36 |  | simp2rl |  | 
						
							| 37 |  | simp2rr |  | 
						
							| 38 |  | eqid |  | 
						
							| 39 |  | eqid |  | 
						
							| 40 |  | eqid |  | 
						
							| 41 |  | eqid |  | 
						
							| 42 |  | eqid |  | 
						
							| 43 |  | simp3 |  | 
						
							| 44 | 1 29 30 31 32 6 7 33 34 35 36 37 38 39 40 41 42 43 | 4sqlem17 |  | 
						
							| 45 | 44 | pm2.21i |  | 
						
							| 46 | 45 | 3expia |  | 
						
							| 47 | 46 | anassrs |  | 
						
							| 48 | 47 | rexlimdvva |  | 
						
							| 49 | 48 | rexlimdvva |  | 
						
							| 50 | 27 49 | mpd |  | 
						
							| 51 | 50 | pm2.01da |  | 
						
							| 52 | 23 | simpld |  | 
						
							| 53 |  | elnn1uz2 |  | 
						
							| 54 | 52 53 | sylib |  | 
						
							| 55 | 54 | ord |  | 
						
							| 56 | 51 55 | mt3d |  | 
						
							| 57 | 56 19 | eqeltrrd |  | 
						
							| 58 |  | oveq1 |  | 
						
							| 59 | 58 | eleq1d |  | 
						
							| 60 | 59 6 | elrab2 |  | 
						
							| 61 | 60 | simprbi |  | 
						
							| 62 | 57 61 | syl |  | 
						
							| 63 | 11 62 | eqeltrrd |  |