Metamath Proof Explorer


Theorem 4sqlem7

Description: Lemma for 4sq . (Contributed by Mario Carneiro, 15-Jul-2014)

Ref Expression
Hypotheses 4sqlem5.2 φA
4sqlem5.3 φM
4sqlem5.4 B=A+M2modMM2
Assertion 4sqlem7 φB2M222

Proof

Step Hyp Ref Expression
1 4sqlem5.2 φA
2 4sqlem5.3 φM
3 4sqlem5.4 B=A+M2modMM2
4 1 2 3 4sqlem5 φBABM
5 4 simpld φB
6 5 zred φB
7 2 nnrpd φM+
8 7 rphalfcld φM2+
9 8 rpred φM2
10 1 2 3 4sqlem6 φM2BB<M2
11 10 simprd φB<M2
12 6 9 11 ltled φBM2
13 10 simpld φM2B
14 9 6 13 lenegcon1d φBM2
15 8 rpge0d φ0M2
16 lenegsq BM20M2BM2BM2B2M22
17 6 9 15 16 syl3anc φBM2BM2B2M22
18 12 14 17 mpbi2and φB2M22
19 2cnd φ2
20 19 sqvald φ22=22
21 20 oveq2d φM222=M222
22 2 nncnd φM
23 2ne0 20
24 23 a1i φ20
25 22 19 24 sqdivd φM22=M222
26 22 sqcld φM2
27 26 19 19 24 24 divdiv1d φM222=M222
28 21 25 27 3eqtr4d φM22=M222
29 18 28 breqtrd φB2M222