Description: Lemma for 4sq . (Contributed by Mario Carneiro, 15-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 4sqlem5.2 | |
|
4sqlem5.3 | |
||
4sqlem5.4 | |
||
Assertion | 4sqlem7 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sqlem5.2 | |
|
2 | 4sqlem5.3 | |
|
3 | 4sqlem5.4 | |
|
4 | 1 2 3 | 4sqlem5 | |
5 | 4 | simpld | |
6 | 5 | zred | |
7 | 2 | nnrpd | |
8 | 7 | rphalfcld | |
9 | 8 | rpred | |
10 | 1 2 3 | 4sqlem6 | |
11 | 10 | simprd | |
12 | 6 9 11 | ltled | |
13 | 10 | simpld | |
14 | 9 6 13 | lenegcon1d | |
15 | 8 | rpge0d | |
16 | lenegsq | |
|
17 | 6 9 15 16 | syl3anc | |
18 | 12 14 17 | mpbi2and | |
19 | 2cnd | |
|
20 | 19 | sqvald | |
21 | 20 | oveq2d | |
22 | 2 | nncnd | |
23 | 2ne0 | |
|
24 | 23 | a1i | |
25 | 22 19 24 | sqdivd | |
26 | 22 | sqcld | |
27 | 26 19 19 24 24 | divdiv1d | |
28 | 21 25 27 | 3eqtr4d | |
29 | 18 28 | breqtrd | |