Metamath Proof Explorer


Theorem abliso

Description: The image of an Abelian group by a group isomorphism is also Abelian. (Contributed by Thierry Arnoux, 8-Mar-2018)

Ref Expression
Assertion abliso MAbelFMGrpIsoNNAbel

Proof

Step Hyp Ref Expression
1 gimghm FMGrpIsoNFMGrpHomN
2 ghmgrp2 FMGrpHomNNGrp
3 1 2 syl FMGrpIsoNNGrp
4 3 adantl MAbelFMGrpIsoNNGrp
5 4 grpmndd MAbelFMGrpIsoNNMnd
6 simpll MAbelFMGrpIsoNxBaseNyBaseNMAbel
7 eqid BaseM=BaseM
8 eqid BaseN=BaseN
9 7 8 gimf1o FMGrpIsoNF:BaseM1-1 ontoBaseN
10 f1ocnv F:BaseM1-1 ontoBaseNF-1:BaseN1-1 ontoBaseM
11 f1of F-1:BaseN1-1 ontoBaseMF-1:BaseNBaseM
12 9 10 11 3syl FMGrpIsoNF-1:BaseNBaseM
13 12 ad2antlr MAbelFMGrpIsoNxBaseNyBaseNF-1:BaseNBaseM
14 simprl MAbelFMGrpIsoNxBaseNyBaseNxBaseN
15 13 14 ffvelcdmd MAbelFMGrpIsoNxBaseNyBaseNF-1xBaseM
16 simprr MAbelFMGrpIsoNxBaseNyBaseNyBaseN
17 13 16 ffvelcdmd MAbelFMGrpIsoNxBaseNyBaseNF-1yBaseM
18 eqid +M=+M
19 7 18 ablcom MAbelF-1xBaseMF-1yBaseMF-1x+MF-1y=F-1y+MF-1x
20 6 15 17 19 syl3anc MAbelFMGrpIsoNxBaseNyBaseNF-1x+MF-1y=F-1y+MF-1x
21 gimcnv FMGrpIsoNF-1NGrpIsoM
22 21 ad2antlr MAbelFMGrpIsoNxBaseNyBaseNF-1NGrpIsoM
23 gimghm F-1NGrpIsoMF-1NGrpHomM
24 22 23 syl MAbelFMGrpIsoNxBaseNyBaseNF-1NGrpHomM
25 eqid +N=+N
26 8 25 18 ghmlin F-1NGrpHomMxBaseNyBaseNF-1x+Ny=F-1x+MF-1y
27 24 14 16 26 syl3anc MAbelFMGrpIsoNxBaseNyBaseNF-1x+Ny=F-1x+MF-1y
28 8 25 18 ghmlin F-1NGrpHomMyBaseNxBaseNF-1y+Nx=F-1y+MF-1x
29 24 16 14 28 syl3anc MAbelFMGrpIsoNxBaseNyBaseNF-1y+Nx=F-1y+MF-1x
30 20 27 29 3eqtr4d MAbelFMGrpIsoNxBaseNyBaseNF-1x+Ny=F-1y+Nx
31 30 fveq2d MAbelFMGrpIsoNxBaseNyBaseNFF-1x+Ny=FF-1y+Nx
32 9 ad2antlr MAbelFMGrpIsoNxBaseNyBaseNF:BaseM1-1 ontoBaseN
33 3 ad2antlr MAbelFMGrpIsoNxBaseNyBaseNNGrp
34 8 25 grpcl NGrpxBaseNyBaseNx+NyBaseN
35 33 14 16 34 syl3anc MAbelFMGrpIsoNxBaseNyBaseNx+NyBaseN
36 f1ocnvfv2 F:BaseM1-1 ontoBaseNx+NyBaseNFF-1x+Ny=x+Ny
37 32 35 36 syl2anc MAbelFMGrpIsoNxBaseNyBaseNFF-1x+Ny=x+Ny
38 8 25 grpcl NGrpyBaseNxBaseNy+NxBaseN
39 33 16 14 38 syl3anc MAbelFMGrpIsoNxBaseNyBaseNy+NxBaseN
40 f1ocnvfv2 F:BaseM1-1 ontoBaseNy+NxBaseNFF-1y+Nx=y+Nx
41 32 39 40 syl2anc MAbelFMGrpIsoNxBaseNyBaseNFF-1y+Nx=y+Nx
42 31 37 41 3eqtr3d MAbelFMGrpIsoNxBaseNyBaseNx+Ny=y+Nx
43 42 ralrimivva MAbelFMGrpIsoNxBaseNyBaseNx+Ny=y+Nx
44 8 25 iscmn NCMndNMndxBaseNyBaseNx+Ny=y+Nx
45 5 43 44 sylanbrc MAbelFMGrpIsoNNCMnd
46 isabl NAbelNGrpNCMnd
47 4 45 46 sylanbrc MAbelFMGrpIsoNNAbel