Step |
Hyp |
Ref |
Expression |
1 |
|
gimghm |
|
2 |
|
ghmgrp2 |
|
3 |
1 2
|
syl |
|
4 |
3
|
adantl |
|
5 |
4
|
grpmndd |
|
6 |
|
simpll |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
7 8
|
gimf1o |
|
10 |
|
f1ocnv |
|
11 |
|
f1of |
|
12 |
9 10 11
|
3syl |
|
13 |
12
|
ad2antlr |
|
14 |
|
simprl |
|
15 |
13 14
|
ffvelrnd |
|
16 |
|
simprr |
|
17 |
13 16
|
ffvelrnd |
|
18 |
|
eqid |
|
19 |
7 18
|
ablcom |
|
20 |
6 15 17 19
|
syl3anc |
|
21 |
|
gimcnv |
|
22 |
21
|
ad2antlr |
|
23 |
|
gimghm |
|
24 |
22 23
|
syl |
|
25 |
|
eqid |
|
26 |
8 25 18
|
ghmlin |
|
27 |
24 14 16 26
|
syl3anc |
|
28 |
8 25 18
|
ghmlin |
|
29 |
24 16 14 28
|
syl3anc |
|
30 |
20 27 29
|
3eqtr4d |
|
31 |
30
|
fveq2d |
|
32 |
9
|
ad2antlr |
|
33 |
3
|
ad2antlr |
|
34 |
8 25
|
grpcl |
|
35 |
33 14 16 34
|
syl3anc |
|
36 |
|
f1ocnvfv2 |
|
37 |
32 35 36
|
syl2anc |
|
38 |
8 25
|
grpcl |
|
39 |
33 16 14 38
|
syl3anc |
|
40 |
|
f1ocnvfv2 |
|
41 |
32 39 40
|
syl2anc |
|
42 |
31 37 41
|
3eqtr3d |
|
43 |
42
|
ralrimivva |
|
44 |
8 25
|
iscmn |
|
45 |
5 43 44
|
sylanbrc |
|
46 |
|
isabl |
|
47 |
4 45 46
|
sylanbrc |
|