Description: The image of an Abelian group by a group isomorphism is also Abelian. (Contributed by Thierry Arnoux, 8-Mar-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | abliso | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gimghm | |
|
2 | ghmgrp2 | |
|
3 | 1 2 | syl | |
4 | 3 | adantl | |
5 | 4 | grpmndd | |
6 | simpll | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | 7 8 | gimf1o | |
10 | f1ocnv | |
|
11 | f1of | |
|
12 | 9 10 11 | 3syl | |
13 | 12 | ad2antlr | |
14 | simprl | |
|
15 | 13 14 | ffvelcdmd | |
16 | simprr | |
|
17 | 13 16 | ffvelcdmd | |
18 | eqid | |
|
19 | 7 18 | ablcom | |
20 | 6 15 17 19 | syl3anc | |
21 | gimcnv | |
|
22 | 21 | ad2antlr | |
23 | gimghm | |
|
24 | 22 23 | syl | |
25 | eqid | |
|
26 | 8 25 18 | ghmlin | |
27 | 24 14 16 26 | syl3anc | |
28 | 8 25 18 | ghmlin | |
29 | 24 16 14 28 | syl3anc | |
30 | 20 27 29 | 3eqtr4d | |
31 | 30 | fveq2d | |
32 | 9 | ad2antlr | |
33 | 3 | ad2antlr | |
34 | 8 25 | grpcl | |
35 | 33 14 16 34 | syl3anc | |
36 | f1ocnvfv2 | |
|
37 | 32 35 36 | syl2anc | |
38 | 8 25 | grpcl | |
39 | 33 16 14 38 | syl3anc | |
40 | f1ocnvfv2 | |
|
41 | 32 39 40 | syl2anc | |
42 | 31 37 41 | 3eqtr3d | |
43 | 42 | ralrimivva | |
44 | 8 25 | iscmn | |
45 | 5 43 44 | sylanbrc | |
46 | isabl | |
|
47 | 4 45 46 | sylanbrc | |