Metamath Proof Explorer


Theorem abliso

Description: The image of an Abelian group by a group isomorphism is also Abelian. (Contributed by Thierry Arnoux, 8-Mar-2018)

Ref Expression
Assertion abliso M Abel F M GrpIso N N Abel

Proof

Step Hyp Ref Expression
1 gimghm F M GrpIso N F M GrpHom N
2 ghmgrp2 F M GrpHom N N Grp
3 1 2 syl F M GrpIso N N Grp
4 3 adantl M Abel F M GrpIso N N Grp
5 4 grpmndd M Abel F M GrpIso N N Mnd
6 simpll M Abel F M GrpIso N x Base N y Base N M Abel
7 eqid Base M = Base M
8 eqid Base N = Base N
9 7 8 gimf1o F M GrpIso N F : Base M 1-1 onto Base N
10 f1ocnv F : Base M 1-1 onto Base N F -1 : Base N 1-1 onto Base M
11 f1of F -1 : Base N 1-1 onto Base M F -1 : Base N Base M
12 9 10 11 3syl F M GrpIso N F -1 : Base N Base M
13 12 ad2antlr M Abel F M GrpIso N x Base N y Base N F -1 : Base N Base M
14 simprl M Abel F M GrpIso N x Base N y Base N x Base N
15 13 14 ffvelrnd M Abel F M GrpIso N x Base N y Base N F -1 x Base M
16 simprr M Abel F M GrpIso N x Base N y Base N y Base N
17 13 16 ffvelrnd M Abel F M GrpIso N x Base N y Base N F -1 y Base M
18 eqid + M = + M
19 7 18 ablcom M Abel F -1 x Base M F -1 y Base M F -1 x + M F -1 y = F -1 y + M F -1 x
20 6 15 17 19 syl3anc M Abel F M GrpIso N x Base N y Base N F -1 x + M F -1 y = F -1 y + M F -1 x
21 gimcnv F M GrpIso N F -1 N GrpIso M
22 21 ad2antlr M Abel F M GrpIso N x Base N y Base N F -1 N GrpIso M
23 gimghm F -1 N GrpIso M F -1 N GrpHom M
24 22 23 syl M Abel F M GrpIso N x Base N y Base N F -1 N GrpHom M
25 eqid + N = + N
26 8 25 18 ghmlin F -1 N GrpHom M x Base N y Base N F -1 x + N y = F -1 x + M F -1 y
27 24 14 16 26 syl3anc M Abel F M GrpIso N x Base N y Base N F -1 x + N y = F -1 x + M F -1 y
28 8 25 18 ghmlin F -1 N GrpHom M y Base N x Base N F -1 y + N x = F -1 y + M F -1 x
29 24 16 14 28 syl3anc M Abel F M GrpIso N x Base N y Base N F -1 y + N x = F -1 y + M F -1 x
30 20 27 29 3eqtr4d M Abel F M GrpIso N x Base N y Base N F -1 x + N y = F -1 y + N x
31 30 fveq2d M Abel F M GrpIso N x Base N y Base N F F -1 x + N y = F F -1 y + N x
32 9 ad2antlr M Abel F M GrpIso N x Base N y Base N F : Base M 1-1 onto Base N
33 3 ad2antlr M Abel F M GrpIso N x Base N y Base N N Grp
34 8 25 grpcl N Grp x Base N y Base N x + N y Base N
35 33 14 16 34 syl3anc M Abel F M GrpIso N x Base N y Base N x + N y Base N
36 f1ocnvfv2 F : Base M 1-1 onto Base N x + N y Base N F F -1 x + N y = x + N y
37 32 35 36 syl2anc M Abel F M GrpIso N x Base N y Base N F F -1 x + N y = x + N y
38 8 25 grpcl N Grp y Base N x Base N y + N x Base N
39 33 16 14 38 syl3anc M Abel F M GrpIso N x Base N y Base N y + N x Base N
40 f1ocnvfv2 F : Base M 1-1 onto Base N y + N x Base N F F -1 y + N x = y + N x
41 32 39 40 syl2anc M Abel F M GrpIso N x Base N y Base N F F -1 y + N x = y + N x
42 31 37 41 3eqtr3d M Abel F M GrpIso N x Base N y Base N x + N y = y + N x
43 42 ralrimivva M Abel F M GrpIso N x Base N y Base N x + N y = y + N x
44 8 25 iscmn N CMnd N Mnd x Base N y Base N x + N y = y + N x
45 5 43 44 sylanbrc M Abel F M GrpIso N N CMnd
46 isabl N Abel N Grp N CMnd
47 4 45 46 sylanbrc M Abel F M GrpIso N N Abel