Metamath Proof Explorer


Theorem abscxp2

Description: Absolute value of a power, when the exponent is real. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion abscxp2 ABAB=AB

Proof

Step Hyp Ref Expression
1 0red ABA=00
2 0le0 00
3 2 a1i ABA=000
4 simplr ABA=0B
5 recxpcl 000B0B
6 1 3 4 5 syl3anc ABA=00B
7 cxpge0 000B00B
8 1 3 4 7 syl3anc ABA=000B
9 6 8 absidd ABA=00B=0B
10 simpr ABA=0A=0
11 10 oveq1d ABA=0AB=0B
12 11 fveq2d ABA=0AB=0B
13 10 abs00bd ABA=0A=0
14 13 oveq1d ABA=0AB=0B
15 9 12 14 3eqtr4d ABA=0AB=AB
16 simplr ABA0B
17 16 recnd ABA0B
18 logcl AA0logA
19 18 adantlr ABA0logA
20 17 19 mulcld ABA0BlogA
21 absef BlogAeBlogA=eBlogA
22 20 21 syl ABA0eBlogA=eBlogA
23 16 19 remul2d ABA0BlogA=BlogA
24 relog AA0logA=logA
25 24 adantlr ABA0logA=logA
26 25 oveq2d ABA0BlogA=BlogA
27 23 26 eqtrd ABA0BlogA=BlogA
28 27 fveq2d ABA0eBlogA=eBlogA
29 22 28 eqtrd ABA0eBlogA=eBlogA
30 simpll ABA0A
31 simpr ABA0A0
32 cxpef AA0BAB=eBlogA
33 30 31 17 32 syl3anc ABA0AB=eBlogA
34 33 fveq2d ABA0AB=eBlogA
35 30 abscld ABA0A
36 35 recnd ABA0A
37 abs00 AA=0A=0
38 37 adantr ABA=0A=0
39 38 necon3bid ABA0A0
40 39 biimpar ABA0A0
41 cxpef AA0BAB=eBlogA
42 36 40 17 41 syl3anc ABA0AB=eBlogA
43 29 34 42 3eqtr4d ABA0AB=AB
44 15 43 pm2.61dane ABAB=AB