Description: Absolute value of a power, when the exponent is real. (Contributed by Mario Carneiro, 15-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | abscxp2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red | |
|
2 | 0le0 | |
|
3 | 2 | a1i | |
4 | simplr | |
|
5 | recxpcl | |
|
6 | 1 3 4 5 | syl3anc | |
7 | cxpge0 | |
|
8 | 1 3 4 7 | syl3anc | |
9 | 6 8 | absidd | |
10 | simpr | |
|
11 | 10 | oveq1d | |
12 | 11 | fveq2d | |
13 | 10 | abs00bd | |
14 | 13 | oveq1d | |
15 | 9 12 14 | 3eqtr4d | |
16 | simplr | |
|
17 | 16 | recnd | |
18 | logcl | |
|
19 | 18 | adantlr | |
20 | 17 19 | mulcld | |
21 | absef | |
|
22 | 20 21 | syl | |
23 | 16 19 | remul2d | |
24 | relog | |
|
25 | 24 | adantlr | |
26 | 25 | oveq2d | |
27 | 23 26 | eqtrd | |
28 | 27 | fveq2d | |
29 | 22 28 | eqtrd | |
30 | simpll | |
|
31 | simpr | |
|
32 | cxpef | |
|
33 | 30 31 17 32 | syl3anc | |
34 | 33 | fveq2d | |
35 | 30 | abscld | |
36 | 35 | recnd | |
37 | abs00 | |
|
38 | 37 | adantr | |
39 | 38 | necon3bid | |
40 | 39 | biimpar | |
41 | cxpef | |
|
42 | 36 40 17 41 | syl3anc | |
43 | 29 34 42 | 3eqtr4d | |
44 | 15 43 | pm2.61dane | |