| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abvpropd.1 |  | 
						
							| 2 |  | abvpropd.2 |  | 
						
							| 3 |  | abvpropd.3 |  | 
						
							| 4 |  | abvpropd.4 |  | 
						
							| 5 | 1 2 3 4 | ringpropd |  | 
						
							| 6 | 1 2 | eqtr3d |  | 
						
							| 7 | 6 | feq2d |  | 
						
							| 8 | 1 2 3 | grpidpropd |  | 
						
							| 9 | 8 | adantr |  | 
						
							| 10 | 9 | eqeq2d |  | 
						
							| 11 | 10 | bibi2d |  | 
						
							| 12 | 4 | fveqeq2d |  | 
						
							| 13 | 3 | fveq2d |  | 
						
							| 14 | 13 | breq1d |  | 
						
							| 15 | 12 14 | anbi12d |  | 
						
							| 16 | 15 | anassrs |  | 
						
							| 17 | 16 | ralbidva |  | 
						
							| 18 | 11 17 | anbi12d |  | 
						
							| 19 | 18 | ralbidva |  | 
						
							| 20 | 1 | raleqdv |  | 
						
							| 21 | 20 | anbi2d |  | 
						
							| 22 | 1 21 | raleqbidv |  | 
						
							| 23 | 2 | raleqdv |  | 
						
							| 24 | 23 | anbi2d |  | 
						
							| 25 | 2 24 | raleqbidv |  | 
						
							| 26 | 19 22 25 | 3bitr3d |  | 
						
							| 27 | 7 26 | anbi12d |  | 
						
							| 28 | 5 27 | anbi12d |  | 
						
							| 29 |  | eqid |  | 
						
							| 30 | 29 | abvrcl |  | 
						
							| 31 |  | eqid |  | 
						
							| 32 |  | eqid |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 | 29 31 32 33 34 | isabv |  | 
						
							| 36 | 30 35 | biadanii |  | 
						
							| 37 |  | eqid |  | 
						
							| 38 | 37 | abvrcl |  | 
						
							| 39 |  | eqid |  | 
						
							| 40 |  | eqid |  | 
						
							| 41 |  | eqid |  | 
						
							| 42 |  | eqid |  | 
						
							| 43 | 37 39 40 41 42 | isabv |  | 
						
							| 44 | 38 43 | biadanii |  | 
						
							| 45 | 28 36 44 | 3bitr4g |  | 
						
							| 46 | 45 | eqrdv |  |