| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ackbij.f |  | 
						
							| 2 | 1 | ackbij1lem8 |  | 
						
							| 3 |  | pweq |  | 
						
							| 4 | 3 | fveq2d |  | 
						
							| 5 |  | fveq2 |  | 
						
							| 6 |  | suceq |  | 
						
							| 7 | 5 6 | syl |  | 
						
							| 8 | 4 7 | eqeq12d |  | 
						
							| 9 |  | pweq |  | 
						
							| 10 | 9 | fveq2d |  | 
						
							| 11 |  | fveq2 |  | 
						
							| 12 |  | suceq |  | 
						
							| 13 | 11 12 | syl |  | 
						
							| 14 | 10 13 | eqeq12d |  | 
						
							| 15 |  | pweq |  | 
						
							| 16 | 15 | fveq2d |  | 
						
							| 17 |  | fveq2 |  | 
						
							| 18 |  | suceq |  | 
						
							| 19 | 17 18 | syl |  | 
						
							| 20 | 16 19 | eqeq12d |  | 
						
							| 21 |  | pweq |  | 
						
							| 22 | 21 | fveq2d |  | 
						
							| 23 |  | fveq2 |  | 
						
							| 24 |  | suceq |  | 
						
							| 25 | 23 24 | syl |  | 
						
							| 26 | 22 25 | eqeq12d |  | 
						
							| 27 |  | df-1o |  | 
						
							| 28 |  | pw0 |  | 
						
							| 29 | 28 | fveq2i |  | 
						
							| 30 |  | 0ex |  | 
						
							| 31 |  | cardsn |  | 
						
							| 32 | 30 31 | ax-mp |  | 
						
							| 33 | 29 32 | eqtri |  | 
						
							| 34 | 1 | ackbij1lem13 |  | 
						
							| 35 |  | suceq |  | 
						
							| 36 | 34 35 | ax-mp |  | 
						
							| 37 | 27 33 36 | 3eqtr4i |  | 
						
							| 38 |  | oveq2 |  | 
						
							| 39 | 38 | adantl |  | 
						
							| 40 |  | ackbij1lem5 |  | 
						
							| 41 | 40 | adantr |  | 
						
							| 42 |  | df-suc |  | 
						
							| 43 | 42 | equncomi |  | 
						
							| 44 | 43 | fveq2i |  | 
						
							| 45 |  | ackbij1lem4 |  | 
						
							| 46 | 45 | adantr |  | 
						
							| 47 |  | ackbij1lem3 |  | 
						
							| 48 | 47 | adantr |  | 
						
							| 49 |  | incom |  | 
						
							| 50 |  | nnord |  | 
						
							| 51 |  | orddisj |  | 
						
							| 52 | 50 51 | syl |  | 
						
							| 53 | 49 52 | eqtrid |  | 
						
							| 54 | 53 | adantr |  | 
						
							| 55 | 1 | ackbij1lem9 |  | 
						
							| 56 | 46 48 54 55 | syl3anc |  | 
						
							| 57 | 1 | ackbij1lem8 |  | 
						
							| 58 | 57 | adantr |  | 
						
							| 59 | 58 | oveq1d |  | 
						
							| 60 | 56 59 | eqtrd |  | 
						
							| 61 | 44 60 | eqtrid |  | 
						
							| 62 |  | suceq |  | 
						
							| 63 | 61 62 | syl |  | 
						
							| 64 |  | nnfi |  | 
						
							| 65 |  | pwfi |  | 
						
							| 66 | 64 65 | sylib |  | 
						
							| 67 | 66 | adantr |  | 
						
							| 68 |  | ficardom |  | 
						
							| 69 | 67 68 | syl |  | 
						
							| 70 | 1 | ackbij1lem10 |  | 
						
							| 71 | 70 | ffvelcdmi |  | 
						
							| 72 | 48 71 | syl |  | 
						
							| 73 |  | nnasuc |  | 
						
							| 74 | 69 72 73 | syl2anc |  | 
						
							| 75 | 63 74 | eqtr4d |  | 
						
							| 76 | 39 41 75 | 3eqtr4d |  | 
						
							| 77 | 76 | ex |  | 
						
							| 78 | 8 14 20 26 37 77 | finds |  | 
						
							| 79 | 2 78 | eqtrd |  |