Metamath Proof Explorer


Theorem addltmul

Description: Sum is less than product for numbers greater than 2. (Contributed by Stefan Allan, 24-Sep-2010)

Ref Expression
Assertion addltmul AB2<A2<BA+B<AB

Proof

Step Hyp Ref Expression
1 2re 2
2 1re 1
3 ltsub1 2A12<A21<A1
4 1 2 3 mp3an13 A2<A21<A1
5 2m1e1 21=1
6 5 breq1i 21<A11<A1
7 4 6 bitrdi A2<A1<A1
8 ltsub1 2B12<B21<B1
9 1 2 8 mp3an13 B2<B21<B1
10 5 breq1i 21<B11<B1
11 9 10 bitrdi B2<B1<B1
12 7 11 bi2anan9 AB2<A2<B1<A11<B1
13 peano2rem AA1
14 peano2rem BB1
15 mulgt1 A1B11<A11<B11<A1B1
16 15 ex A1B11<A11<B11<A1B1
17 13 14 16 syl2an AB1<A11<B11<A1B1
18 12 17 sylbid AB2<A2<B1<A1B1
19 recn AA
20 recn BB
21 ax-1cn 1
22 mulsub A1B1A1B1=AB+11-A1+B1
23 21 22 mpanl2 AB1A1B1=AB+11-A1+B1
24 21 23 mpanr2 ABA1B1=AB+11-A1+B1
25 19 20 24 syl2an ABA1B1=AB+11-A1+B1
26 25 breq2d AB1<A1B11<AB+11-A1+B1
27 remulcl A1A1
28 2 27 mpan2 AA1
29 remulcl B1B1
30 2 29 mpan2 BB1
31 readdcl A1B1A1+B1
32 28 30 31 syl2an ABA1+B1
33 remulcl ABAB
34 2 2 remulcli 11
35 readdcl AB11AB+11
36 33 34 35 sylancl ABAB+11
37 ltaddsub2 A1+B11AB+11A1+B1+1<AB+111<AB+11-A1+B1
38 2 37 mp3an2 A1+B1AB+11A1+B1+1<AB+111<AB+11-A1+B1
39 32 36 38 syl2anc ABA1+B1+1<AB+111<AB+11-A1+B1
40 1t1e1 11=1
41 40 oveq2i AB+11=AB+1
42 41 breq2i A1+B1+1<AB+11A1+B1+1<AB+1
43 39 42 bitr3di AB1<AB+11-A1+B1A1+B1+1<AB+1
44 ltadd1 A1+B1AB1A1+B1<ABA1+B1+1<AB+1
45 2 44 mp3an3 A1+B1ABA1+B1<ABA1+B1+1<AB+1
46 32 33 45 syl2anc ABA1+B1<ABA1+B1+1<AB+1
47 ax-1rid AA1=A
48 ax-1rid BB1=B
49 47 48 oveqan12d ABA1+B1=A+B
50 49 breq1d ABA1+B1<ABA+B<AB
51 46 50 bitr3d ABA1+B1+1<AB+1A+B<AB
52 26 43 51 3bitrd AB1<A1B1A+B<AB
53 18 52 sylibd AB2<A2<BA+B<AB
54 53 imp AB2<A2<BA+B<AB