Description: Sum is less than product for numbers greater than 2. (Contributed by Stefan Allan, 24-Sep-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | addltmul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re | |
|
2 | 1re | |
|
3 | ltsub1 | |
|
4 | 1 2 3 | mp3an13 | |
5 | 2m1e1 | |
|
6 | 5 | breq1i | |
7 | 4 6 | bitrdi | |
8 | ltsub1 | |
|
9 | 1 2 8 | mp3an13 | |
10 | 5 | breq1i | |
11 | 9 10 | bitrdi | |
12 | 7 11 | bi2anan9 | |
13 | peano2rem | |
|
14 | peano2rem | |
|
15 | mulgt1 | |
|
16 | 15 | ex | |
17 | 13 14 16 | syl2an | |
18 | 12 17 | sylbid | |
19 | recn | |
|
20 | recn | |
|
21 | ax-1cn | |
|
22 | mulsub | |
|
23 | 21 22 | mpanl2 | |
24 | 21 23 | mpanr2 | |
25 | 19 20 24 | syl2an | |
26 | 25 | breq2d | |
27 | remulcl | |
|
28 | 2 27 | mpan2 | |
29 | remulcl | |
|
30 | 2 29 | mpan2 | |
31 | readdcl | |
|
32 | 28 30 31 | syl2an | |
33 | remulcl | |
|
34 | 2 2 | remulcli | |
35 | readdcl | |
|
36 | 33 34 35 | sylancl | |
37 | ltaddsub2 | |
|
38 | 2 37 | mp3an2 | |
39 | 32 36 38 | syl2anc | |
40 | 1t1e1 | |
|
41 | 40 | oveq2i | |
42 | 41 | breq2i | |
43 | 39 42 | bitr3di | |
44 | ltadd1 | |
|
45 | 2 44 | mp3an3 | |
46 | 32 33 45 | syl2anc | |
47 | ax-1rid | |
|
48 | ax-1rid | |
|
49 | 47 48 | oveqan12d | |
50 | 49 | breq1d | |
51 | 46 50 | bitr3d | |
52 | 26 43 51 | 3bitrd | |
53 | 18 52 | sylibd | |
54 | 53 | imp | |