Description: For each complex number C , there exists a unique complex number a added to the square of a unique another complex number b resulting in the given complex number C . The unique complex number a is C , and the unique another complex number b is 0 .
Remark: This, together with addsqnreup , is an example showing that the pattern E! a e. A E! b e. B ph does not necessarily mean "There are unique sets a and b fulfilling ph ). See also comments for df-eu and 2eu4 . For more details see comment for addsqnreup . (Contributed by AV, 21-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | addsq2reu | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | |
|
2 | oveq1 | |
|
3 | 2 | eqeq1d | |
4 | 3 | reubidv | |
5 | eqeq1 | |
|
6 | 5 | imbi2d | |
7 | 6 | ralbidv | |
8 | 4 7 | anbi12d | |
9 | 8 | adantl | |
10 | 0cnd | |
|
11 | reueq | |
|
12 | 10 11 | sylib | |
13 | subid | |
|
14 | 13 | adantr | |
15 | 14 | eqeq1d | |
16 | simpl | |
|
17 | simpr | |
|
18 | 17 | sqcld | |
19 | 16 16 18 | subaddd | |
20 | eqcom | |
|
21 | sqeq0 | |
|
22 | 20 21 | bitrid | |
23 | 22 | adantl | |
24 | 15 19 23 | 3bitr3d | |
25 | 24 | reubidva | |
26 | 12 25 | mpbird | |
27 | simpr | |
|
28 | 27 | adantr | |
29 | sqcl | |
|
30 | 29 | adantl | |
31 | simpl | |
|
32 | 31 | adantr | |
33 | 28 30 32 | addrsub | |
34 | 33 | reubidva | |
35 | subcl | |
|
36 | reusq0 | |
|
37 | 35 36 | syl | |
38 | subeq0 | |
|
39 | 38 | biimpd | |
40 | 37 39 | sylbid | |
41 | 34 40 | sylbid | |
42 | 41 | ralrimiva | |
43 | 26 42 | jca | |
44 | 1 9 43 | rspcedvd | |
45 | oveq1 | |
|
46 | 45 | eqeq1d | |
47 | 46 | reubidv | |
48 | 47 | reu8 | |
49 | 44 48 | sylibr | |