Metamath Proof Explorer


Theorem addsq2reu

Description: For each complex number C , there exists a unique complex number a added to the square of a unique another complex number b resulting in the given complex number C . The unique complex number a is C , and the unique another complex number b is 0 .

Remark: This, together with addsqnreup , is an example showing that the pattern E! a e. A E! b e. B ph does not necessarily mean "There are unique sets a and b fulfilling ph ). See also comments for df-eu and 2eu4 . For more details see comment for addsqnreup . (Contributed by AV, 21-Jun-2023)

Ref Expression
Assertion addsq2reu C∃!a∃!ba+b2=C

Proof

Step Hyp Ref Expression
1 id CC
2 oveq1 a=Ca+b2=C+b2
3 2 eqeq1d a=Ca+b2=CC+b2=C
4 3 reubidv a=C∃!ba+b2=C∃!bC+b2=C
5 eqeq1 a=Ca=cC=c
6 5 imbi2d a=C∃!bc+b2=Ca=c∃!bc+b2=CC=c
7 6 ralbidv a=Cc∃!bc+b2=Ca=cc∃!bc+b2=CC=c
8 4 7 anbi12d a=C∃!ba+b2=Cc∃!bc+b2=Ca=c∃!bC+b2=Cc∃!bc+b2=CC=c
9 8 adantl Ca=C∃!ba+b2=Cc∃!bc+b2=Ca=c∃!bC+b2=Cc∃!bc+b2=CC=c
10 0cnd C0
11 reueq 0∃!bb=0
12 10 11 sylib C∃!bb=0
13 subid CCC=0
14 13 adantr CbCC=0
15 14 eqeq1d CbCC=b20=b2
16 simpl CbC
17 simpr Cbb
18 17 sqcld Cbb2
19 16 16 18 subaddd CbCC=b2C+b2=C
20 eqcom 0=b2b2=0
21 sqeq0 bb2=0b=0
22 20 21 bitrid b0=b2b=0
23 22 adantl Cb0=b2b=0
24 15 19 23 3bitr3d CbC+b2=Cb=0
25 24 reubidva C∃!bC+b2=C∃!bb=0
26 12 25 mpbird C∃!bC+b2=C
27 simpr Ccc
28 27 adantr Ccbc
29 sqcl bb2
30 29 adantl Ccbb2
31 simpl CcC
32 31 adantr CcbC
33 28 30 32 addrsub Ccbc+b2=Cb2=Cc
34 33 reubidva Cc∃!bc+b2=C∃!bb2=Cc
35 subcl CcCc
36 reusq0 Cc∃!bb2=CcCc=0
37 35 36 syl Cc∃!bb2=CcCc=0
38 subeq0 CcCc=0C=c
39 38 biimpd CcCc=0C=c
40 37 39 sylbid Cc∃!bb2=CcC=c
41 34 40 sylbid Cc∃!bc+b2=CC=c
42 41 ralrimiva Cc∃!bc+b2=CC=c
43 26 42 jca C∃!bC+b2=Cc∃!bc+b2=CC=c
44 1 9 43 rspcedvd Ca∃!ba+b2=Cc∃!bc+b2=Ca=c
45 oveq1 a=ca+b2=c+b2
46 45 eqeq1d a=ca+b2=Cc+b2=C
47 46 reubidv a=c∃!ba+b2=C∃!bc+b2=C
48 47 reu8 ∃!a∃!ba+b2=Ca∃!ba+b2=Cc∃!bc+b2=Ca=c
49 44 48 sylibr C∃!a∃!ba+b2=C