Metamath Proof Explorer


Theorem addsq2reu

Description: For each complex number C , there exists a unique complex number a added to the square of a unique another complex number b resulting in the given complex number C . The unique complex number a is C , and the unique another complex number b is 0 .

Remark: This, together with addsqnreup , is an example showing that the pattern E! a e. A E! b e. B ph does not necessarily mean "There are unique sets a and b fulfilling ph ). See also comments for df-eu and 2eu4 . For more details see comment for addsqnreup . (Contributed by AV, 21-Jun-2023)

Ref Expression
Assertion addsq2reu C ∃! a ∃! b a + b 2 = C

Proof

Step Hyp Ref Expression
1 id C C
2 oveq1 a = C a + b 2 = C + b 2
3 2 eqeq1d a = C a + b 2 = C C + b 2 = C
4 3 reubidv a = C ∃! b a + b 2 = C ∃! b C + b 2 = C
5 eqeq1 a = C a = c C = c
6 5 imbi2d a = C ∃! b c + b 2 = C a = c ∃! b c + b 2 = C C = c
7 6 ralbidv a = C c ∃! b c + b 2 = C a = c c ∃! b c + b 2 = C C = c
8 4 7 anbi12d a = C ∃! b a + b 2 = C c ∃! b c + b 2 = C a = c ∃! b C + b 2 = C c ∃! b c + b 2 = C C = c
9 8 adantl C a = C ∃! b a + b 2 = C c ∃! b c + b 2 = C a = c ∃! b C + b 2 = C c ∃! b c + b 2 = C C = c
10 0cnd C 0
11 reueq 0 ∃! b b = 0
12 10 11 sylib C ∃! b b = 0
13 subid C C C = 0
14 13 adantr C b C C = 0
15 14 eqeq1d C b C C = b 2 0 = b 2
16 simpl C b C
17 simpr C b b
18 17 sqcld C b b 2
19 16 16 18 subaddd C b C C = b 2 C + b 2 = C
20 eqcom 0 = b 2 b 2 = 0
21 sqeq0 b b 2 = 0 b = 0
22 20 21 syl5bb b 0 = b 2 b = 0
23 22 adantl C b 0 = b 2 b = 0
24 15 19 23 3bitr3d C b C + b 2 = C b = 0
25 24 reubidva C ∃! b C + b 2 = C ∃! b b = 0
26 12 25 mpbird C ∃! b C + b 2 = C
27 simpr C c c
28 27 adantr C c b c
29 sqcl b b 2
30 29 adantl C c b b 2
31 simpl C c C
32 31 adantr C c b C
33 28 30 32 addrsub C c b c + b 2 = C b 2 = C c
34 33 reubidva C c ∃! b c + b 2 = C ∃! b b 2 = C c
35 subcl C c C c
36 reusq0 C c ∃! b b 2 = C c C c = 0
37 35 36 syl C c ∃! b b 2 = C c C c = 0
38 subeq0 C c C c = 0 C = c
39 38 biimpd C c C c = 0 C = c
40 37 39 sylbid C c ∃! b b 2 = C c C = c
41 34 40 sylbid C c ∃! b c + b 2 = C C = c
42 41 ralrimiva C c ∃! b c + b 2 = C C = c
43 26 42 jca C ∃! b C + b 2 = C c ∃! b c + b 2 = C C = c
44 1 9 43 rspcedvd C a ∃! b a + b 2 = C c ∃! b c + b 2 = C a = c
45 oveq1 a = c a + b 2 = c + b 2
46 45 eqeq1d a = c a + b 2 = C c + b 2 = C
47 46 reubidv a = c ∃! b a + b 2 = C ∃! b c + b 2 = C
48 47 reu8 ∃! a ∃! b a + b 2 = C a ∃! b a + b 2 = C c ∃! b c + b 2 = C a = c
49 44 48 sylibr C ∃! a ∃! b a + b 2 = C