Metamath Proof Explorer


Theorem afvres

Description: The value of a restricted function, analogous to fvres . (Contributed by Alexander van der Vekens, 22-Jul-2017)

Ref Expression
Assertion afvres ABFB'''A=F'''A

Proof

Step Hyp Ref Expression
1 elin ABdomFABAdomF
2 1 biimpri ABAdomFABdomF
3 dmres domFB=BdomF
4 2 3 eleqtrrdi ABAdomFAdomFB
5 4 ex ABAdomFAdomFB
6 snssi ABAB
7 6 resabs1d ABFBA=FA
8 7 eqcomd ABFA=FBA
9 8 funeqd ABFunFAFunFBA
10 9 biimpd ABFunFAFunFBA
11 5 10 anim12d ABAdomFFunFAAdomFBFunFBA
12 11 impcom AdomFFunFAABAdomFBFunFBA
13 df-dfat FBdefAtAAdomFBFunFBA
14 afvfundmfveq FBdefAtAFB'''A=FBA
15 13 14 sylbir AdomFBFunFBAFB'''A=FBA
16 12 15 syl AdomFFunFAABFB'''A=FBA
17 fvres ABFBA=FA
18 17 adantl AdomFFunFAABFBA=FA
19 df-dfat FdefAtAAdomFFunFA
20 afvfundmfveq FdefAtAF'''A=FA
21 19 20 sylbir AdomFFunFAF'''A=FA
22 21 eqcomd AdomFFunFAFA=F'''A
23 22 adantr AdomFFunFAABFA=F'''A
24 16 18 23 3eqtrd AdomFFunFAABFB'''A=F'''A
25 pm3.4 ABAdomFABAdomF
26 1 25 sylbi ABdomFABAdomF
27 26 3 eleq2s AdomFBABAdomF
28 27 com12 ABAdomFBAdomF
29 7 funeqd ABFunFBAFunFA
30 29 biimpd ABFunFBAFunFA
31 28 30 anim12d ABAdomFBFunFBAAdomFFunFA
32 31 con3d AB¬AdomFFunFA¬AdomFBFunFBA
33 32 impcom ¬AdomFFunFAAB¬AdomFBFunFBA
34 afvnfundmuv ¬FBdefAtAFB'''A=V
35 13 34 sylnbir ¬AdomFBFunFBAFB'''A=V
36 33 35 syl ¬AdomFFunFAABFB'''A=V
37 afvnfundmuv ¬FdefAtAF'''A=V
38 19 37 sylnbir ¬AdomFFunFAF'''A=V
39 38 eqcomd ¬AdomFFunFAV=F'''A
40 39 adantr ¬AdomFFunFAABV=F'''A
41 36 40 eqtrd ¬AdomFFunFAABFB'''A=F'''A
42 24 41 pm2.61ian ABFB'''A=F'''A