Metamath Proof Explorer


Theorem aks4d1lem1

Description: Technical lemma to reduce proof size. (Contributed by metakunt, 14-Nov-2024)

Ref Expression
Hypotheses aks4d1lem1.1 φN3
aks4d1lem1.2 B=log2N5
Assertion aks4d1lem1 φB9<B

Proof

Step Hyp Ref Expression
1 aks4d1lem1.1 φN3
2 aks4d1lem1.2 B=log2N5
3 2re 2
4 3 a1i φ2
5 2pos 0<2
6 5 a1i φ0<2
7 eluzelz N3N
8 1 7 syl φN
9 8 zred φN
10 0red φ0
11 3re 3
12 11 a1i φ3
13 3pos 0<3
14 13 a1i φ0<3
15 eluzle N33N
16 1 15 syl φ3N
17 10 12 9 14 16 ltletrd φ0<N
18 1red φ1
19 1lt2 1<2
20 19 a1i φ1<2
21 18 20 ltned φ12
22 21 necomd φ21
23 4 6 9 17 22 relogbcld φlog2N
24 5nn0 50
25 24 a1i φ50
26 23 25 reexpcld φlog2N5
27 26 ceilcld φlog2N5
28 9re 9
29 28 a1i φ9
30 27 zred φlog2N5
31 9pos 0<9
32 31 a1i φ0<9
33 9 16 3lexlogpow5ineq4 φ9<log2N5
34 ceilge log2N5log2N5log2N5
35 26 34 syl φlog2N5log2N5
36 29 26 30 33 35 ltletrd φ9<log2N5
37 10 29 30 32 36 lttrd φ0<log2N5
38 27 37 jca φlog2N50<log2N5
39 elnnz log2N5log2N50<log2N5
40 38 39 sylibr φlog2N5
41 2 eleq1i Blog2N5
42 40 41 sylibr φB
43 2 a1i φB=log2N5
44 36 43 breqtrrd φ9<B
45 42 44 jca φB9<B