| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks5lema.1 |
|
| 2 |
|
aks5lema.2 |
|
| 3 |
|
aks5lema.3 |
|
| 4 |
|
aks5lema.9 |
|
| 5 |
|
aks5lema.10 |
|
| 6 |
|
aks5lema.11 |
|
| 7 |
|
aks5lema.14 |
|
| 8 |
|
aks5lema.15 |
|
| 9 |
|
aks5lem5a.13 |
|
| 10 |
1
|
ad3antrrr |
|
| 11 |
3
|
ad3antrrr |
|
| 12 |
6
|
ad3antrrr |
|
| 13 |
|
simpr |
|
| 14 |
|
elfzelz |
|
| 15 |
14
|
adantl |
|
| 16 |
15
|
adantr |
|
| 17 |
16
|
adantr |
|
| 18 |
|
eqid |
|
| 19 |
|
eqid |
|
| 20 |
|
eqid |
|
| 21 |
3
|
simp2d |
|
| 22 |
21
|
adantr |
|
| 23 |
22
|
nnnn0d |
|
| 24 |
|
eqid |
|
| 25 |
24
|
zncrng |
|
| 26 |
23 25
|
syl |
|
| 27 |
8 18 19 20 26 15
|
ply1asclzrhval |
|
| 28 |
27
|
oveq2d |
|
| 29 |
28
|
oveq2d |
|
| 30 |
29
|
eceq1d |
|
| 31 |
30
|
adantr |
|
| 32 |
|
simpr |
|
| 33 |
27
|
eqcomd |
|
| 34 |
33
|
oveq2d |
|
| 35 |
34
|
eceq1d |
|
| 36 |
35
|
adantr |
|
| 37 |
31 32 36
|
3eqtrd |
|
| 38 |
37
|
adantr |
|
| 39 |
10 2 11 4 5 12 7 8 13 17 38
|
aks5lem4a |
|
| 40 |
39
|
ralrimiva |
|
| 41 |
|
eqid |
|
| 42 |
|
eqid |
|
| 43 |
|
eqid |
|
| 44 |
|
eqid |
|
| 45 |
1
|
fldcrngd |
|
| 46 |
45
|
adantr |
|
| 47 |
41 42 43 44 46 15
|
ply1asclzrhval |
|
| 48 |
47
|
oveq2d |
|
| 49 |
|
eqid |
|
| 50 |
|
eqid |
|
| 51 |
41
|
ply1crng |
|
| 52 |
45 51
|
syl |
|
| 53 |
52
|
adantr |
|
| 54 |
|
crngring |
|
| 55 |
53 54
|
syl |
|
| 56 |
55
|
ringgrpd |
|
| 57 |
46
|
crngringd |
|
| 58 |
|
eqid |
|
| 59 |
58 41 49
|
vr1cl |
|
| 60 |
57 59
|
syl |
|
| 61 |
43
|
zrhrhm |
|
| 62 |
55 61
|
syl |
|
| 63 |
|
zringbas |
|
| 64 |
63 49
|
rhmf |
|
| 65 |
62 64
|
syl |
|
| 66 |
65 15
|
ffvelcdmd |
|
| 67 |
49 50 56 60 66
|
grpcld |
|
| 68 |
48 67
|
eqeltrd |
|
| 69 |
68
|
adantr |
|
| 70 |
22
|
adantr |
|
| 71 |
7 69 70
|
aks6d1c1p1 |
|
| 72 |
40 71
|
mpbird |
|
| 73 |
72
|
ex |
|
| 74 |
73
|
ralimdva |
|
| 75 |
9 74
|
mpd |
|