Description: Lemma for asinlem3 . (Contributed by Mario Carneiro, 1-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | asinlem3a | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imcl | |
|
2 | 1 | adantr | |
3 | 2 | renegcld | |
4 | ax-1cn | |
|
5 | sqcl | |
|
6 | 5 | adantr | |
7 | subcl | |
|
8 | 4 6 7 | sylancr | |
9 | 8 | sqrtcld | |
10 | 9 | recld | |
11 | 1 | le0neg1d | |
12 | 11 | biimpa | |
13 | 8 | sqrtrege0d | |
14 | 3 10 12 13 | addge0d | |
15 | ax-icn | |
|
16 | simpl | |
|
17 | mulcl | |
|
18 | 15 16 17 | sylancr | |
19 | 18 9 | readdd | |
20 | negicn | |
|
21 | mulcl | |
|
22 | 20 16 21 | sylancr | |
23 | 22 | renegd | |
24 | 15 | negnegi | |
25 | 24 | oveq1i | |
26 | mulneg1 | |
|
27 | 20 16 26 | sylancr | |
28 | 25 27 | eqtr3id | |
29 | 28 | fveq2d | |
30 | imre | |
|
31 | 30 | adantr | |
32 | 31 | negeqd | |
33 | 23 29 32 | 3eqtr4d | |
34 | 33 | oveq1d | |
35 | 19 34 | eqtrd | |
36 | 14 35 | breqtrrd | |