Metamath Proof Explorer


Theorem asinlem3a

Description: Lemma for asinlem3 . (Contributed by Mario Carneiro, 1-Apr-2015)

Ref Expression
Assertion asinlem3a AA00iA+1A2

Proof

Step Hyp Ref Expression
1 imcl AA
2 1 adantr AA0A
3 2 renegcld AA0A
4 ax-1cn 1
5 sqcl AA2
6 5 adantr AA0A2
7 subcl 1A21A2
8 4 6 7 sylancr AA01A2
9 8 sqrtcld AA01A2
10 9 recld AA01A2
11 1 le0neg1d AA00A
12 11 biimpa AA00A
13 8 sqrtrege0d AA001A2
14 3 10 12 13 addge0d AA00-A+1A2
15 ax-icn i
16 simpl AA0A
17 mulcl iAiA
18 15 16 17 sylancr AA0iA
19 18 9 readdd AA0iA+1A2=iA+1A2
20 negicn i
21 mulcl iAiA
22 20 16 21 sylancr AA0iA
23 22 renegd AA0iA=iA
24 15 negnegi i=i
25 24 oveq1i iA=iA
26 mulneg1 iAiA=iA
27 20 16 26 sylancr AA0iA=iA
28 25 27 eqtr3id AA0iA=iA
29 28 fveq2d AA0iA=iA
30 imre AA=iA
31 30 adantr AA0A=iA
32 31 negeqd AA0A=iA
33 23 29 32 3eqtr4d AA0iA=A
34 33 oveq1d AA0iA+1A2=-A+1A2
35 19 34 eqtrd AA0iA+1A2=-A+1A2
36 14 35 breqtrrd AA00iA+1A2