Metamath Proof Explorer


Theorem assa2ass

Description: Left- and right-associative property of an associative algebra. Notice that the scalars are commuted! (Contributed by AV, 14-Aug-2019)

Ref Expression
Hypotheses assa2ass.v V=BaseW
assa2ass.f F=ScalarW
assa2ass.b B=BaseF
assa2ass.m ˙=F
assa2ass.s ·˙=W
assa2ass.t ×˙=W
Assertion assa2ass WAssAlgABCBXVYVA·˙X×˙C·˙Y=C˙A·˙X×˙Y

Proof

Step Hyp Ref Expression
1 assa2ass.v V=BaseW
2 assa2ass.f F=ScalarW
3 assa2ass.b B=BaseF
4 assa2ass.m ˙=F
5 assa2ass.s ·˙=W
6 assa2ass.t ×˙=W
7 simp1 WAssAlgABCBXVYVWAssAlg
8 simpr ABCBCB
9 8 3ad2ant2 WAssAlgABCBXVYVCB
10 assalmod WAssAlgWLMod
11 simpl ABCBAB
12 simpl XVYVXV
13 1 2 5 3 lmodvscl WLModABXVA·˙XV
14 10 11 12 13 syl3an WAssAlgABCBXVYVA·˙XV
15 simpr XVYVYV
16 15 3ad2ant3 WAssAlgABCBXVYVYV
17 1 2 3 5 6 assaassr WAssAlgCBA·˙XVYVA·˙X×˙C·˙Y=C·˙A·˙X×˙Y
18 7 9 14 16 17 syl13anc WAssAlgABCBXVYVA·˙X×˙C·˙Y=C·˙A·˙X×˙Y
19 1 2 3 5 6 assaass WAssAlgCBA·˙XVYVC·˙A·˙X×˙Y=C·˙A·˙X×˙Y
20 19 eqcomd WAssAlgCBA·˙XVYVC·˙A·˙X×˙Y=C·˙A·˙X×˙Y
21 7 9 14 16 20 syl13anc WAssAlgABCBXVYVC·˙A·˙X×˙Y=C·˙A·˙X×˙Y
22 10 3ad2ant1 WAssAlgABCBXVYVWLMod
23 11 3ad2ant2 WAssAlgABCBXVYVAB
24 12 3ad2ant3 WAssAlgABCBXVYVXV
25 1 2 5 3 4 lmodvsass WLModCBABXVC˙A·˙X=C·˙A·˙X
26 25 eqcomd WLModCBABXVC·˙A·˙X=C˙A·˙X
27 26 oveq1d WLModCBABXVC·˙A·˙X×˙Y=C˙A·˙X×˙Y
28 22 9 23 24 27 syl13anc WAssAlgABCBXVYVC·˙A·˙X×˙Y=C˙A·˙X×˙Y
29 2 assasca WAssAlgFRing
30 29 adantr WAssAlgABCBFRing
31 8 adantl WAssAlgABCBCB
32 11 adantl WAssAlgABCBAB
33 3 4 ringcl FRingCBABC˙AB
34 30 31 32 33 syl3anc WAssAlgABCBC˙AB
35 34 3adant3 WAssAlgABCBXVYVC˙AB
36 1 2 3 5 6 assaass WAssAlgC˙ABXVYVC˙A·˙X×˙Y=C˙A·˙X×˙Y
37 7 35 24 16 36 syl13anc WAssAlgABCBXVYVC˙A·˙X×˙Y=C˙A·˙X×˙Y
38 28 37 eqtrd WAssAlgABCBXVYVC·˙A·˙X×˙Y=C˙A·˙X×˙Y
39 18 21 38 3eqtrd WAssAlgABCBXVYVA·˙X×˙C·˙Y=C˙A·˙X×˙Y