Description: Left- and right-associative property of an associative algebra. Notice that the scalars are commuted! (Contributed by AV, 14-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | assa2ass.v | |
|
assa2ass.f | |
||
assa2ass.b | |
||
assa2ass.m | |
||
assa2ass.s | |
||
assa2ass.t | |
||
Assertion | assa2ass | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | assa2ass.v | |
|
2 | assa2ass.f | |
|
3 | assa2ass.b | |
|
4 | assa2ass.m | |
|
5 | assa2ass.s | |
|
6 | assa2ass.t | |
|
7 | simp1 | |
|
8 | simpr | |
|
9 | 8 | 3ad2ant2 | |
10 | assalmod | |
|
11 | simpl | |
|
12 | simpl | |
|
13 | 1 2 5 3 | lmodvscl | |
14 | 10 11 12 13 | syl3an | |
15 | simpr | |
|
16 | 15 | 3ad2ant3 | |
17 | 1 2 3 5 6 | assaassr | |
18 | 7 9 14 16 17 | syl13anc | |
19 | 1 2 3 5 6 | assaass | |
20 | 19 | eqcomd | |
21 | 7 9 14 16 20 | syl13anc | |
22 | 10 | 3ad2ant1 | |
23 | 11 | 3ad2ant2 | |
24 | 12 | 3ad2ant3 | |
25 | 1 2 5 3 4 | lmodvsass | |
26 | 25 | eqcomd | |
27 | 26 | oveq1d | |
28 | 22 9 23 24 27 | syl13anc | |
29 | 2 | assasca | |
30 | 29 | adantr | |
31 | 8 | adantl | |
32 | 11 | adantl | |
33 | 3 4 | ringcl | |
34 | 30 31 32 33 | syl3anc | |
35 | 34 | 3adant3 | |
36 | 1 2 3 5 6 | assaass | |
37 | 7 35 24 16 36 | syl13anc | |
38 | 28 37 | eqtrd | |
39 | 18 21 38 | 3eqtrd | |