Metamath Proof Explorer


Theorem atordi

Description: An ordering law for a Hilbert lattice atom and a commuting subspace. (Contributed by NM, 12-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypothesis atoml.1 AC
Assertion atordi BHAtomsA𝐶BBABA

Proof

Step Hyp Ref Expression
1 atoml.1 AC
2 atelch BHAtomsBC
3 1 choccli AC
4 chincl ACBCABC
5 3 4 mpan BCABC
6 chj0 ABCAB0=AB
7 5 6 syl BCAB0=AB
8 incom AB=BA
9 7 8 eqtrdi BCAB0=BA
10 h0elch 0C
11 chjcom ABC0CAB0=0AB
12 5 10 11 sylancl BCAB0=0AB
13 9 12 eqtr3d BCBA=0AB
14 incom AA=AA
15 1 chocini AA=0
16 14 15 eqtri AA=0
17 16 oveq1i AAAB=0AB
18 13 17 eqtr4di BCBA=AAAB
19 18 adantr BCA𝐶BBA=AAAB
20 1 cmidi A𝐶A
21 1 1 20 cmcm2ii A𝐶A
22 fh2 ACACBCA𝐶AA𝐶BAAB=AAAB
23 21 22 mpanr1 ACACBCA𝐶BAAB=AAAB
24 1 23 mp3anl2 ACBCA𝐶BAAB=AAAB
25 3 24 mpanl1 BCA𝐶BAAB=AAAB
26 19 25 eqtr4d BCA𝐶BBA=AAB
27 2 26 sylan BHAtomsA𝐶BBA=AAB
28 incom AAB=ABA
29 27 28 eqtrdi BHAtomsA𝐶BBA=ABA
30 29 adantr BHAtomsA𝐶B¬BABA=ABA
31 1 atoml2i BHAtoms¬BAABAHAtoms
32 31 adantlr BHAtomsA𝐶B¬BAABAHAtoms
33 30 32 eqeltrd BHAtomsA𝐶B¬BABAHAtoms
34 atssma BHAtomsACBABAHAtoms
35 3 34 mpan2 BHAtomsBABAHAtoms
36 35 ad2antrr BHAtomsA𝐶B¬BABABAHAtoms
37 33 36 mpbird BHAtomsA𝐶B¬BABA
38 37 ex BHAtomsA𝐶B¬BABA
39 38 orrd BHAtomsA𝐶BBABA