Metamath Proof Explorer


Theorem ballotlemro

Description: Range of R is included in O . (Contributed by Thierry Arnoux, 17-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotth.e E=cO|i1M+N0<Fci
ballotth.mgtn N<M
ballotth.i I=cOEsupk1M+N|Fck=0<
ballotth.s S=cOEi1M+NifiIcIc+1-ii
ballotth.r R=cOEScc
Assertion ballotlemro COERCO

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotth.e E=cO|i1M+N0<Fci
7 ballotth.mgtn N<M
8 ballotth.i I=cOEsupk1M+N|Fck=0<
9 ballotth.s S=cOEi1M+NifiIcIc+1-ii
10 ballotth.r R=cOEScc
11 1 2 3 4 5 6 7 8 9 10 ballotlemrval COERC=SCC
12 imassrn SCCranSC
13 1 2 3 4 5 6 7 8 9 ballotlemsf1o COESC:1M+N1-1 onto1M+NSC-1=SC
14 13 simpld COESC:1M+N1-1 onto1M+N
15 f1ofo SC:1M+N1-1 onto1M+NSC:1M+Nonto1M+N
16 forn SC:1M+Nonto1M+NranSC=1M+N
17 14 15 16 3syl COEranSC=1M+N
18 12 17 sseqtrid COESCC1M+N
19 11 18 eqsstrd COERC1M+N
20 f1of1 SC:1M+N1-1 onto1M+NSC:1M+N1-11M+N
21 14 20 syl COESC:1M+N1-11M+N
22 eldifi COECO
23 1 2 3 ballotlemelo COC1M+NC=M
24 22 23 sylib COEC1M+NC=M
25 24 simpld COEC1M+N
26 id COECOE
27 f1imaeng SC:1M+N1-11M+NC1M+NCOESCCC
28 21 25 26 27 syl3anc COESCCC
29 11 28 eqbrtrd COERCC
30 hasheni RCCRC=C
31 29 30 syl COERC=C
32 24 simprd COEC=M
33 31 32 eqtrd COERC=M
34 1 2 3 ballotlemelo RCORC1M+NRC=M
35 19 33 34 sylanbrc COERCO