Metamath Proof Explorer


Theorem bcsiALT

Description: Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of Beran p. 98. (Contributed by NM, 11-Oct-1999) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses bcs.1 A
bcs.2 B
Assertion bcsiALT A ih B norm A norm B

Proof

Step Hyp Ref Expression
1 bcs.1 A
2 bcs.2 B
3 fveq2 A ih B = 0 A ih B = 0
4 abs0 0 = 0
5 normge0 A 0 norm A
6 1 5 ax-mp 0 norm A
7 normge0 B 0 norm B
8 2 7 ax-mp 0 norm B
9 1 normcli norm A
10 2 normcli norm B
11 9 10 mulge0i 0 norm A 0 norm B 0 norm A norm B
12 6 8 11 mp2an 0 norm A norm B
13 4 12 eqbrtri 0 norm A norm B
14 3 13 eqbrtrdi A ih B = 0 A ih B norm A norm B
15 df-ne A ih B 0 ¬ A ih B = 0
16 2 1 his1i B ih A = A ih B
17 16 oveq2i A ih B A ih B B ih A = A ih B A ih B A ih B
18 17 oveq2i A ih B A ih B A ih B + A ih B A ih B B ih A = A ih B A ih B A ih B + A ih B A ih B A ih B
19 1 2 hicli A ih B
20 abslem2 A ih B A ih B 0 A ih B A ih B A ih B + A ih B A ih B A ih B = 2 A ih B
21 19 20 mpan A ih B 0 A ih B A ih B A ih B + A ih B A ih B A ih B = 2 A ih B
22 18 21 syl5req A ih B 0 2 A ih B = A ih B A ih B A ih B + A ih B A ih B B ih A
23 19 abs00i A ih B = 0 A ih B = 0
24 23 necon3bii A ih B 0 A ih B 0
25 19 abscli A ih B
26 25 recni A ih B
27 19 26 divclzi A ih B 0 A ih B A ih B
28 19 26 divreczi A ih B 0 A ih B A ih B = A ih B 1 A ih B
29 28 fveq2d A ih B 0 A ih B A ih B = A ih B 1 A ih B
30 26 recclzi A ih B 0 1 A ih B
31 absmul A ih B 1 A ih B A ih B 1 A ih B = A ih B 1 A ih B
32 19 30 31 sylancr A ih B 0 A ih B 1 A ih B = A ih B 1 A ih B
33 25 rerecclzi A ih B 0 1 A ih B
34 0re 0
35 33 34 jctil A ih B 0 0 1 A ih B
36 19 absgt0i A ih B 0 0 < A ih B
37 24 36 bitri A ih B 0 0 < A ih B
38 25 recgt0i 0 < A ih B 0 < 1 A ih B
39 37 38 sylbi A ih B 0 0 < 1 A ih B
40 ltle 0 1 A ih B 0 < 1 A ih B 0 1 A ih B
41 35 39 40 sylc A ih B 0 0 1 A ih B
42 33 41 absidd A ih B 0 1 A ih B = 1 A ih B
43 42 oveq2d A ih B 0 A ih B 1 A ih B = A ih B 1 A ih B
44 32 43 eqtrd A ih B 0 A ih B 1 A ih B = A ih B 1 A ih B
45 26 recidzi A ih B 0 A ih B 1 A ih B = 1
46 29 44 45 3eqtrd A ih B 0 A ih B A ih B = 1
47 27 46 jca A ih B 0 A ih B A ih B A ih B A ih B = 1
48 24 47 sylbir A ih B 0 A ih B A ih B A ih B A ih B = 1
49 1 2 normlem7tALT A ih B A ih B A ih B A ih B = 1 A ih B A ih B A ih B + A ih B A ih B B ih A 2 B ih B A ih A
50 48 49 syl A ih B 0 A ih B A ih B A ih B + A ih B A ih B B ih A 2 B ih B A ih A
51 22 50 eqbrtrd A ih B 0 2 A ih B 2 B ih B A ih A
52 15 51 sylbir ¬ A ih B = 0 2 A ih B 2 B ih B A ih A
53 10 recni norm B
54 9 recni norm A
55 normval B norm B = B ih B
56 2 55 ax-mp norm B = B ih B
57 normval A norm A = A ih A
58 1 57 ax-mp norm A = A ih A
59 56 58 oveq12i norm B norm A = B ih B A ih A
60 53 54 59 mulcomli norm A norm B = B ih B A ih A
61 60 breq2i A ih B norm A norm B A ih B B ih B A ih A
62 2pos 0 < 2
63 hiidge0 B 0 B ih B
64 hiidrcl B B ih B
65 2 64 ax-mp B ih B
66 65 sqrtcli 0 B ih B B ih B
67 2 63 66 mp2b B ih B
68 hiidge0 A 0 A ih A
69 hiidrcl A A ih A
70 1 69 ax-mp A ih A
71 70 sqrtcli 0 A ih A A ih A
72 1 68 71 mp2b A ih A
73 67 72 remulcli B ih B A ih A
74 2re 2
75 25 73 74 lemul2i 0 < 2 A ih B B ih B A ih A 2 A ih B 2 B ih B A ih A
76 62 75 ax-mp A ih B B ih B A ih A 2 A ih B 2 B ih B A ih A
77 61 76 bitri A ih B norm A norm B 2 A ih B 2 B ih B A ih A
78 52 77 sylibr ¬ A ih B = 0 A ih B norm A norm B
79 14 78 pm2.61i A ih B norm A norm B