| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bcs.1 |
|
| 2 |
|
bcs.2 |
|
| 3 |
|
fveq2 |
|
| 4 |
|
abs0 |
|
| 5 |
|
normge0 |
|
| 6 |
1 5
|
ax-mp |
|
| 7 |
|
normge0 |
|
| 8 |
2 7
|
ax-mp |
|
| 9 |
1
|
normcli |
|
| 10 |
2
|
normcli |
|
| 11 |
9 10
|
mulge0i |
|
| 12 |
6 8 11
|
mp2an |
|
| 13 |
4 12
|
eqbrtri |
|
| 14 |
3 13
|
eqbrtrdi |
|
| 15 |
|
df-ne |
|
| 16 |
2 1
|
his1i |
|
| 17 |
16
|
oveq2i |
|
| 18 |
17
|
oveq2i |
|
| 19 |
1 2
|
hicli |
|
| 20 |
|
abslem2 |
|
| 21 |
19 20
|
mpan |
|
| 22 |
18 21
|
eqtr2id |
|
| 23 |
19
|
abs00i |
|
| 24 |
23
|
necon3bii |
|
| 25 |
19
|
abscli |
|
| 26 |
25
|
recni |
|
| 27 |
19 26
|
divclzi |
|
| 28 |
19 26
|
divreczi |
|
| 29 |
28
|
fveq2d |
|
| 30 |
26
|
recclzi |
|
| 31 |
|
absmul |
|
| 32 |
19 30 31
|
sylancr |
|
| 33 |
25
|
rerecclzi |
|
| 34 |
|
0re |
|
| 35 |
33 34
|
jctil |
|
| 36 |
19
|
absgt0i |
|
| 37 |
24 36
|
bitri |
|
| 38 |
25
|
recgt0i |
|
| 39 |
37 38
|
sylbi |
|
| 40 |
|
ltle |
|
| 41 |
35 39 40
|
sylc |
|
| 42 |
33 41
|
absidd |
|
| 43 |
42
|
oveq2d |
|
| 44 |
32 43
|
eqtrd |
|
| 45 |
26
|
recidzi |
|
| 46 |
29 44 45
|
3eqtrd |
|
| 47 |
27 46
|
jca |
|
| 48 |
24 47
|
sylbir |
|
| 49 |
1 2
|
normlem7tALT |
|
| 50 |
48 49
|
syl |
|
| 51 |
22 50
|
eqbrtrd |
|
| 52 |
15 51
|
sylbir |
|
| 53 |
10
|
recni |
|
| 54 |
9
|
recni |
|
| 55 |
|
normval |
|
| 56 |
2 55
|
ax-mp |
|
| 57 |
|
normval |
|
| 58 |
1 57
|
ax-mp |
|
| 59 |
56 58
|
oveq12i |
|
| 60 |
53 54 59
|
mulcomli |
|
| 61 |
60
|
breq2i |
|
| 62 |
|
2pos |
|
| 63 |
|
hiidge0 |
|
| 64 |
|
hiidrcl |
|
| 65 |
2 64
|
ax-mp |
|
| 66 |
65
|
sqrtcli |
|
| 67 |
2 63 66
|
mp2b |
|
| 68 |
|
hiidge0 |
|
| 69 |
|
hiidrcl |
|
| 70 |
1 69
|
ax-mp |
|
| 71 |
70
|
sqrtcli |
|
| 72 |
1 68 71
|
mp2b |
|
| 73 |
67 72
|
remulcli |
|
| 74 |
|
2re |
|
| 75 |
25 73 74
|
lemul2i |
|
| 76 |
62 75
|
ax-mp |
|
| 77 |
61 76
|
bitri |
|
| 78 |
52 77
|
sylibr |
|
| 79 |
14 78
|
pm2.61i |
|