Metamath Proof Explorer


Theorem bcth

Description: Baire's Category Theorem. If a nonempty metric space is complete, it is nonmeager in itself. In other words, no open set in the metric space can be the countable union of rare closed subsets (where rare means having a closure with empty interior), so some subset Mk must have a nonempty interior. Theorem 4.7-2 of Kreyszig p. 247. (The terminology "meager" and "nonmeager" is used by Kreyszig to replace Baire's "of the first category" and "of the second category." The latter terms are going out of favor to avoid confusion with category theory.) See bcthlem5 for an overview of the proof. (Contributed by NM, 28-Oct-2007) (Proof shortened by Mario Carneiro, 6-Jan-2014)

Ref Expression
Hypothesis bcth.2 J=MetOpenD
Assertion bcth DCMetXM:ClsdJintJranMkintJMk

Proof

Step Hyp Ref Expression
1 bcth.2 J=MetOpenD
2 simpll DCMetXM:ClsdJkintJMk=DCMetX
3 eleq1w x=yxXyX
4 eleq1w r=mr+m+
5 3 4 bi2anan9 x=yr=mxXr+yXm+
6 simpr x=yr=mr=m
7 6 breq1d x=yr=mr<1km<1k
8 oveq12 x=yr=mxballDr=yballDm
9 8 fveq2d x=yr=mclsJxballDr=clsJyballDm
10 9 sseq1d x=yr=mclsJxballDrballDzMkclsJyballDmballDzMk
11 7 10 anbi12d x=yr=mr<1kclsJxballDrballDzMkm<1kclsJyballDmballDzMk
12 5 11 anbi12d x=yr=mxXr+r<1kclsJxballDrballDzMkyXm+m<1kclsJyballDmballDzMk
13 12 cbvopabv xr|xXr+r<1kclsJxballDrballDzMk=ym|yXm+m<1kclsJyballDmballDzMk
14 oveq2 k=n1k=1n
15 14 breq2d k=nm<1km<1n
16 fveq2 k=nMk=Mn
17 16 difeq2d k=nballDzMk=ballDzMn
18 17 sseq2d k=nclsJyballDmballDzMkclsJyballDmballDzMn
19 15 18 anbi12d k=nm<1kclsJyballDmballDzMkm<1nclsJyballDmballDzMn
20 19 anbi2d k=nyXm+m<1kclsJyballDmballDzMkyXm+m<1nclsJyballDmballDzMn
21 20 opabbidv k=nym|yXm+m<1kclsJyballDmballDzMk=ym|yXm+m<1nclsJyballDmballDzMn
22 13 21 eqtrid k=nxr|xXr+r<1kclsJxballDrballDzMk=ym|yXm+m<1nclsJyballDmballDzMn
23 fveq2 z=gballDz=ballDg
24 23 difeq1d z=gballDzMn=ballDgMn
25 24 sseq2d z=gclsJyballDmballDzMnclsJyballDmballDgMn
26 25 anbi2d z=gm<1nclsJyballDmballDzMnm<1nclsJyballDmballDgMn
27 26 anbi2d z=gyXm+m<1nclsJyballDmballDzMnyXm+m<1nclsJyballDmballDgMn
28 27 opabbidv z=gym|yXm+m<1nclsJyballDmballDzMn=ym|yXm+m<1nclsJyballDmballDgMn
29 22 28 cbvmpov k,zX×+xr|xXr+r<1kclsJxballDrballDzMk=n,gX×+ym|yXm+m<1nclsJyballDmballDgMn
30 simplr DCMetXM:ClsdJkintJMk=M:ClsdJ
31 simpr DCMetXM:ClsdJkintJMk=kintJMk=
32 16 fveqeq2d k=nintJMk=intJMn=
33 32 cbvralvw kintJMk=nintJMn=
34 31 33 sylib DCMetXM:ClsdJkintJMk=nintJMn=
35 1 2 29 30 34 bcthlem5 DCMetXM:ClsdJkintJMk=intJranM=
36 35 ex DCMetXM:ClsdJkintJMk=intJranM=
37 36 necon3ad DCMetXM:ClsdJintJranM¬kintJMk=
38 37 3impia DCMetXM:ClsdJintJranM¬kintJMk=
39 df-ne intJMk¬intJMk=
40 39 rexbii kintJMkk¬intJMk=
41 rexnal k¬intJMk=¬kintJMk=
42 40 41 bitri kintJMk¬kintJMk=
43 38 42 sylibr DCMetXM:ClsdJintJranMkintJMk