Step |
Hyp |
Ref |
Expression |
1 |
|
bcth.2 |
|
2 |
|
simpll |
|
3 |
|
eleq1w |
|
4 |
|
eleq1w |
|
5 |
3 4
|
bi2anan9 |
|
6 |
|
simpr |
|
7 |
6
|
breq1d |
|
8 |
|
oveq12 |
|
9 |
8
|
fveq2d |
|
10 |
9
|
sseq1d |
|
11 |
7 10
|
anbi12d |
|
12 |
5 11
|
anbi12d |
|
13 |
12
|
cbvopabv |
|
14 |
|
oveq2 |
|
15 |
14
|
breq2d |
|
16 |
|
fveq2 |
|
17 |
16
|
difeq2d |
|
18 |
17
|
sseq2d |
|
19 |
15 18
|
anbi12d |
|
20 |
19
|
anbi2d |
|
21 |
20
|
opabbidv |
|
22 |
13 21
|
eqtrid |
|
23 |
|
fveq2 |
|
24 |
23
|
difeq1d |
|
25 |
24
|
sseq2d |
|
26 |
25
|
anbi2d |
|
27 |
26
|
anbi2d |
|
28 |
27
|
opabbidv |
|
29 |
22 28
|
cbvmpov |
|
30 |
|
simplr |
|
31 |
|
simpr |
|
32 |
16
|
fveqeq2d |
|
33 |
32
|
cbvralvw |
|
34 |
31 33
|
sylib |
|
35 |
1 2 29 30 34
|
bcthlem5 |
|
36 |
35
|
ex |
|
37 |
36
|
necon3ad |
|
38 |
37
|
3impia |
|
39 |
|
df-ne |
|
40 |
39
|
rexbii |
|
41 |
|
rexnal |
|
42 |
40 41
|
bitri |
|
43 |
38 42
|
sylibr |
|