Description: Bézout's identity: For any integers A and B , there are integers x , y such that ( A gcd B ) = A x. x + B x. y . This is Metamath 100 proof #60. (Contributed by Mario Carneiro, 22-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | bezout | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 | |
|
2 | 1 | 2rexbidv | |
3 | oveq2 | |
|
4 | 3 | oveq1d | |
5 | 4 | eqeq2d | |
6 | oveq2 | |
|
7 | 6 | oveq2d | |
8 | 7 | eqeq2d | |
9 | 5 8 | cbvrex2vw | |
10 | 2 9 | bitrdi | |
11 | 10 | cbvrabv | |
12 | simpll | |
|
13 | simplr | |
|
14 | eqid | |
|
15 | simpr | |
|
16 | 11 12 13 14 15 | bezoutlem4 | |
17 | eqeq1 | |
|
18 | 17 | 2rexbidv | |
19 | 18 | elrab | |
20 | 19 | simprbi | |
21 | 16 20 | syl | |
22 | 21 | ex | |
23 | 0z | |
|
24 | 00id | |
|
25 | 0cn | |
|
26 | 25 | mul01i | |
27 | 26 26 | oveq12i | |
28 | gcd0val | |
|
29 | 24 27 28 | 3eqtr4ri | |
30 | oveq2 | |
|
31 | 30 | oveq1d | |
32 | 31 | eqeq2d | |
33 | oveq2 | |
|
34 | 33 | oveq2d | |
35 | 34 | eqeq2d | |
36 | 32 35 | rspc2ev | |
37 | 23 23 29 36 | mp3an | |
38 | oveq12 | |
|
39 | oveq1 | |
|
40 | oveq1 | |
|
41 | 39 40 | oveqan12d | |
42 | 38 41 | eqeq12d | |
43 | 42 | 2rexbidv | |
44 | 37 43 | mpbiri | |
45 | 22 44 | pm2.61d2 | |