Metamath Proof Explorer


Theorem bj-imdirval3

Description: Value of the functionalized direct image. (Contributed by BJ, 16-Dec-2023)

Ref Expression
Hypotheses bj-imdirval3.exa φ A U
bj-imdirval3.exb φ B V
bj-imdirval3.arg φ R A × B
Assertion bj-imdirval3 φ X A 𝒫 * B R Y X A Y B R X = Y

Proof

Step Hyp Ref Expression
1 bj-imdirval3.exa φ A U
2 bj-imdirval3.exb φ B V
3 bj-imdirval3.arg φ R A × B
4 1 2 3 bj-imdirval2 φ A 𝒫 * B R = x y | x A y B R x = y
5 4 breqd φ X A 𝒫 * B R Y X x y | x A y B R x = y Y
6 brabv X x y | x A y B R x = y Y X V Y V
7 5 6 biimtrdi φ X A 𝒫 * B R Y X V Y V
8 7 pm4.71rd φ X A 𝒫 * B R Y X V Y V X A 𝒫 * B R Y
9 simpl X V Y V X V
10 9 adantl φ X V Y V X V
11 simpr X V Y V Y V
12 11 adantl φ X V Y V Y V
13 4 adantr φ X V Y V A 𝒫 * B R = x y | x A y B R x = y
14 simpl x = X y = Y x = X
15 14 sseq1d x = X y = Y x A X A
16 simpr x = X y = Y y = Y
17 16 sseq1d x = X y = Y y B Y B
18 15 17 anbi12d x = X y = Y x A y B X A Y B
19 imaeq2 x = X R x = R X
20 id y = Y y = Y
21 19 20 eqeqan12d x = X y = Y R x = y R X = Y
22 18 21 anbi12d x = X y = Y x A y B R x = y X A Y B R X = Y
23 22 adantl φ X V Y V x = X y = Y x A y B R x = y X A Y B R X = Y
24 10 12 13 23 brabd φ X V Y V X A 𝒫 * B R Y X A Y B R X = Y
25 24 pm5.32da φ X V Y V X A 𝒫 * B R Y X V Y V X A Y B R X = Y
26 simpr X V Y V X A Y B R X = Y X A Y B R X = Y
27 1 adantr φ X A A U
28 simpr φ X A X A
29 27 28 ssexd φ X A X V
30 29 ex φ X A X V
31 2 adantr φ Y B B V
32 simpr φ Y B Y B
33 31 32 ssexd φ Y B Y V
34 33 ex φ Y B Y V
35 30 34 anim12d φ X A Y B X V Y V
36 35 adantrd φ X A Y B R X = Y X V Y V
37 36 ancrd φ X A Y B R X = Y X V Y V X A Y B R X = Y
38 26 37 impbid2 φ X V Y V X A Y B R X = Y X A Y B R X = Y
39 8 25 38 3bitrd φ X A 𝒫 * B R Y X A Y B R X = Y