Metamath Proof Explorer


Theorem bnj1408

Description: Technical lemma for bnj1414 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1408.1 B=predXARypredXARtrClyAR
bnj1408.2 C=predXARytrClXARtrClyAR
bnj1408.3 θRFrSeAXA
bnj1408.4 τBVTrFoBARpredXARB
Assertion bnj1408 RFrSeAXAtrClXAR=B

Proof

Step Hyp Ref Expression
1 bnj1408.1 B=predXARypredXARtrClyAR
2 bnj1408.2 C=predXARytrClXARtrClyAR
3 bnj1408.3 θRFrSeAXA
4 bnj1408.4 τBVTrFoBARpredXARB
5 3 biimpri RFrSeAXAθ
6 1 bnj1413 RFrSeAXABV
7 simplll RFrSeAXAzBzpredXARRFrSeA
8 bnj213 predXARA
9 8 sseli zpredXARzA
10 9 adantl RFrSeAXAzBzpredXARzA
11 bnj906 RFrSeAzApredzARtrClzAR
12 7 10 11 syl2anc RFrSeAXAzBzpredXARpredzARtrClzAR
13 bnj1318 y=ztrClyAR=trClzAR
14 13 ssiun2s zpredXARtrClzARypredXARtrClyAR
15 ssun4 trClzARypredXARtrClyARtrClzARpredXARypredXARtrClyAR
16 15 1 sseqtrrdi trClzARypredXARtrClyARtrClzARB
17 14 16 syl zpredXARtrClzARB
18 17 adantl RFrSeAXAzBzpredXARtrClzARB
19 12 18 sstrd RFrSeAXAzBzpredXARpredzARB
20 simpr RFrSeAXAzBzypredXARtrClyARzypredXARtrClyAR
21 20 bnj1405 RFrSeAXAzBzypredXARtrClyARypredXARztrClyAR
22 biid RFrSeAXAzBzypredXARtrClyARypredXARztrClyARRFrSeAXAzBzypredXARtrClyARypredXARztrClyAR
23 nfv yRFrSeAXA
24 nfcv _ypredXAR
25 nfiu1 _yypredXARtrClyAR
26 24 25 nfun _ypredXARypredXARtrClyAR
27 1 26 nfcxfr _yB
28 27 nfcri yzB
29 23 28 nfan yRFrSeAXAzB
30 25 nfcri yzypredXARtrClyAR
31 29 30 nfan yRFrSeAXAzBzypredXARtrClyAR
32 31 nf5ri RFrSeAXAzBzypredXARtrClyARyRFrSeAXAzBzypredXARtrClyAR
33 21 22 32 bnj1521 RFrSeAXAzBzypredXARtrClyARyRFrSeAXAzBzypredXARtrClyARypredXARztrClyAR
34 simplll RFrSeAXAzBzypredXARtrClyARRFrSeA
35 34 3ad2ant1 RFrSeAXAzBzypredXARtrClyARypredXARztrClyARRFrSeA
36 bnj1147 trClyARA
37 simp3 RFrSeAXAzBzypredXARtrClyARypredXARztrClyARztrClyAR
38 36 37 bnj1213 RFrSeAXAzBzypredXARtrClyARypredXARztrClyARzA
39 35 38 11 syl2anc RFrSeAXAzBzypredXARtrClyARypredXARztrClyARpredzARtrClzAR
40 simp2 RFrSeAXAzBzypredXARtrClyARypredXARztrClyARypredXAR
41 8 40 bnj1213 RFrSeAXAzBzypredXARtrClyARypredXARztrClyARyA
42 bnj1125 RFrSeAyAztrClyARtrClzARtrClyAR
43 35 41 37 42 syl3anc RFrSeAXAzBzypredXARtrClyARypredXARztrClyARtrClzARtrClyAR
44 39 43 sstrd RFrSeAXAzBzypredXARtrClyARypredXARztrClyARpredzARtrClyAR
45 ssiun2 ypredXARtrClyARypredXARtrClyAR
46 45 3ad2ant2 RFrSeAXAzBzypredXARtrClyARypredXARztrClyARtrClyARypredXARtrClyAR
47 ssun4 trClyARypredXARtrClyARtrClyARpredXARypredXARtrClyAR
48 47 1 sseqtrrdi trClyARypredXARtrClyARtrClyARB
49 46 48 syl RFrSeAXAzBzypredXARtrClyARypredXARztrClyARtrClyARB
50 44 49 sstrd RFrSeAXAzBzypredXARtrClyARypredXARztrClyARpredzARB
51 33 50 bnj593 RFrSeAXAzBzypredXARtrClyARypredzARB
52 nfcv _ypredzAR
53 52 27 nfss ypredzARB
54 53 nf5ri predzARBypredzARB
55 51 54 bnj1397 RFrSeAXAzBzypredXARtrClyARpredzARB
56 simpr RFrSeAXAzBzB
57 1 bnj1138 zBzpredXARzypredXARtrClyAR
58 56 57 sylib RFrSeAXAzBzpredXARzypredXARtrClyAR
59 19 55 58 mpjaodan RFrSeAXAzBpredzARB
60 59 ralrimiva RFrSeAXAzBpredzARB
61 df-bnj19 TrFoBARzBpredzARB
62 60 61 sylibr RFrSeAXATrFoBAR
63 1 bnj931 predXARB
64 63 a1i RFrSeAXApredXARB
65 6 62 64 4 syl3anbrc RFrSeAXAτ
66 3 4 bnj1124 θτtrClXARB
67 5 65 66 syl2anc RFrSeAXAtrClXARB
68 bnj906 RFrSeAXApredXARtrClXAR
69 iunss1 predXARtrClXARypredXARtrClyARytrClXARtrClyAR
70 unss2 ypredXARtrClyARytrClXARtrClyARpredXARypredXARtrClyARpredXARytrClXARtrClyAR
71 68 69 70 3syl RFrSeAXApredXARypredXARtrClyARpredXARytrClXARtrClyAR
72 71 1 2 3sstr4g RFrSeAXABC
73 biid RFrSeAXARFrSeAXA
74 biid CVTrFoCARpredXARCCVTrFoCARpredXARC
75 2 73 74 bnj1136 RFrSeAXAtrClXAR=C
76 72 75 sseqtrrd RFrSeAXABtrClXAR
77 67 76 eqssd RFrSeAXAtrClXAR=B