Metamath Proof Explorer


Theorem bnj1463

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1463.1 B = d | d A x d pred x A R d
bnj1463.2 Y = x f pred x A R
bnj1463.3 C = f | d B f Fn d x d f x = G Y
bnj1463.4 τ f C dom f = x trCl x A R
bnj1463.5 D = x A | ¬ f τ
bnj1463.6 ψ R FrSe A D
bnj1463.7 χ ψ x D y D ¬ y R x
bnj1463.8 No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
bnj1463.9 No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
bnj1463.10 P = H
bnj1463.11 Z = x P pred x A R
bnj1463.12 Q = P x G Z
bnj1463.13 W = z Q pred z A R
bnj1463.14 E = x trCl x A R
bnj1463.15 χ Q V
bnj1463.16 χ z E Q z = G W
bnj1463.17 χ Q Fn E
bnj1463.18 χ E B
Assertion bnj1463 χ Q C

Proof

Step Hyp Ref Expression
1 bnj1463.1 B = d | d A x d pred x A R d
2 bnj1463.2 Y = x f pred x A R
3 bnj1463.3 C = f | d B f Fn d x d f x = G Y
4 bnj1463.4 τ f C dom f = x trCl x A R
5 bnj1463.5 D = x A | ¬ f τ
6 bnj1463.6 ψ R FrSe A D
7 bnj1463.7 χ ψ x D y D ¬ y R x
8 bnj1463.8 Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
9 bnj1463.9 Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
10 bnj1463.10 P = H
11 bnj1463.11 Z = x P pred x A R
12 bnj1463.12 Q = P x G Z
13 bnj1463.13 W = z Q pred z A R
14 bnj1463.14 E = x trCl x A R
15 bnj1463.15 χ Q V
16 bnj1463.16 χ z E Q z = G W
17 bnj1463.17 χ Q Fn E
18 bnj1463.18 χ E B
19 18 elexd χ E V
20 eleq1 d = E d B E B
21 fneq2 d = E Q Fn d Q Fn E
22 raleq d = E z d Q z = G W z E Q z = G W
23 21 22 anbi12d d = E Q Fn d z d Q z = G W Q Fn E z E Q z = G W
24 20 23 anbi12d d = E d B Q Fn d z d Q z = G W E B Q Fn E z E Q z = G W
25 1 bnj1317 w B d w B
26 25 nfcii _ d B
27 26 nfel2 d E B
28 1 2 3 4 5 6 7 8 9 10 11 12 bnj1467 w Q d w Q
29 28 nfcii _ d Q
30 nfcv _ d E
31 29 30 nffn d Q Fn E
32 1 2 3 4 5 6 7 8 9 10 11 12 13 bnj1446 Q z = G W d Q z = G W
33 32 nf5i d Q z = G W
34 30 33 nfralw d z E Q z = G W
35 31 34 nfan d Q Fn E z E Q z = G W
36 27 35 nfan d E B Q Fn E z E Q z = G W
37 36 nf5ri E B Q Fn E z E Q z = G W d E B Q Fn E z E Q z = G W
38 18 17 16 jca32 χ E B Q Fn E z E Q z = G W
39 24 37 38 bnj1465 χ E V d d B Q Fn d z d Q z = G W
40 19 39 mpdan χ d d B Q Fn d z d Q z = G W
41 df-rex d B Q Fn d z d Q z = G W d d B Q Fn d z d Q z = G W
42 40 41 sylibr χ d B Q Fn d z d Q z = G W
43 nfcv _ f B
44 1 2 3 4 5 6 7 8 9 10 11 12 bnj1466 w Q f w Q
45 44 nfcii _ f Q
46 nfcv _ f d
47 45 46 nffn f Q Fn d
48 1 2 3 4 5 6 7 8 9 10 11 12 13 bnj1448 Q z = G W f Q z = G W
49 48 nf5i f Q z = G W
50 46 49 nfralw f z d Q z = G W
51 47 50 nfan f Q Fn d z d Q z = G W
52 43 51 nfrex f d B Q Fn d z d Q z = G W
53 52 nf5ri d B Q Fn d z d Q z = G W f d B Q Fn d z d Q z = G W
54 29 nfeq2 d f = Q
55 fneq1 f = Q f Fn d Q Fn d
56 fveq1 f = Q f z = Q z
57 reseq1 f = Q f pred z A R = Q pred z A R
58 57 opeq2d f = Q z f pred z A R = z Q pred z A R
59 58 13 eqtr4di f = Q z f pred z A R = W
60 59 fveq2d f = Q G z f pred z A R = G W
61 56 60 eqeq12d f = Q f z = G z f pred z A R Q z = G W
62 61 ralbidv f = Q z d f z = G z f pred z A R z d Q z = G W
63 55 62 anbi12d f = Q f Fn d z d f z = G z f pred z A R Q Fn d z d Q z = G W
64 54 63 rexbid f = Q d B f Fn d z d f z = G z f pred z A R d B Q Fn d z d Q z = G W
65 53 64 44 bnj1468 Q V [˙Q / f]˙ d B f Fn d z d f z = G z f pred z A R d B Q Fn d z d Q z = G W
66 15 65 syl χ [˙Q / f]˙ d B f Fn d z d f z = G z f pred z A R d B Q Fn d z d Q z = G W
67 42 66 mpbird χ [˙Q / f]˙ d B f Fn d z d f z = G z f pred z A R
68 fveq2 x = z f x = f z
69 id x = z x = z
70 bnj602 x = z pred x A R = pred z A R
71 70 reseq2d x = z f pred x A R = f pred z A R
72 69 71 opeq12d x = z x f pred x A R = z f pred z A R
73 2 72 eqtrid x = z Y = z f pred z A R
74 73 fveq2d x = z G Y = G z f pred z A R
75 68 74 eqeq12d x = z f x = G Y f z = G z f pred z A R
76 75 cbvralvw x d f x = G Y z d f z = G z f pred z A R
77 76 anbi2i f Fn d x d f x = G Y f Fn d z d f z = G z f pred z A R
78 77 rexbii d B f Fn d x d f x = G Y d B f Fn d z d f z = G z f pred z A R
79 78 sbcbii [˙Q / f]˙ d B f Fn d x d f x = G Y [˙Q / f]˙ d B f Fn d z d f z = G z f pred z A R
80 67 79 sylibr χ [˙Q / f]˙ d B f Fn d x d f x = G Y
81 3 bnj1454 Q V Q C [˙Q / f]˙ d B f Fn d x d f x = G Y
82 15 81 syl χ Q C [˙Q / f]˙ d B f Fn d x d f x = G Y
83 80 82 mpbird χ Q C