| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1sdom2 |  | 
						
							| 2 |  | sdomdom |  | 
						
							| 3 | 1 2 | ax-mp |  | 
						
							| 4 |  | relsdom |  | 
						
							| 5 | 4 | brrelex2i |  | 
						
							| 6 |  | djudom2 |  | 
						
							| 7 | 3 5 6 | sylancr |  | 
						
							| 8 |  | canthp1lem1 |  | 
						
							| 9 |  | domtr |  | 
						
							| 10 | 7 8 9 | syl2anc |  | 
						
							| 11 |  | fal |  | 
						
							| 12 |  | ensym |  | 
						
							| 13 |  | bren |  | 
						
							| 14 | 12 13 | sylib |  | 
						
							| 15 |  | f1of |  | 
						
							| 16 |  | pwidg |  | 
						
							| 17 | 5 16 | syl |  | 
						
							| 18 |  | ffvelcdm |  | 
						
							| 19 | 15 17 18 | syl2anr |  | 
						
							| 20 |  | dju1dif |  | 
						
							| 21 | 5 19 20 | syl2an2r |  | 
						
							| 22 |  | bren |  | 
						
							| 23 | 21 22 | sylib |  | 
						
							| 24 |  | simpll |  | 
						
							| 25 |  | simplr |  | 
						
							| 26 |  | simpr |  | 
						
							| 27 |  | eqeq1 |  | 
						
							| 28 |  | id |  | 
						
							| 29 | 27 28 | ifbieq2d |  | 
						
							| 30 | 29 | cbvmptv |  | 
						
							| 31 | 30 | coeq2i |  | 
						
							| 32 |  | eqid |  | 
						
							| 33 | 32 | fpwwecbv |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 | 24 25 26 31 33 34 | canthp1lem2 |  | 
						
							| 36 | 35 | pm2.21i |  | 
						
							| 37 | 23 36 | exlimddv |  | 
						
							| 38 | 37 | ex |  | 
						
							| 39 | 38 | exlimdv |  | 
						
							| 40 | 14 39 | syl5 |  | 
						
							| 41 | 11 40 | mtoi |  | 
						
							| 42 |  | brsdom |  | 
						
							| 43 | 10 41 42 | sylanbrc |  |