Metamath Proof Explorer


Theorem caragencmpl

Description: A measure built with the Caratheodory's construction is complete. See Definition 112Df of Fremlin1 p. 19. This is Exercise 113Xa of Fremlin1 p. 21. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses caragencmpl.o φOOutMeas
caragencmpl.x X=domO
caragencmpl.e φEX
caragencmpl.z φOE=0
caragencmpl.s S=CaraGenO
Assertion caragencmpl φES

Proof

Step Hyp Ref Expression
1 caragencmpl.o φOOutMeas
2 caragencmpl.x X=domO
3 caragencmpl.e φEX
4 caragencmpl.z φOE=0
5 caragencmpl.s S=CaraGenO
6 1 2 unidmex φXV
7 6 3 ssexd φEV
8 elpwg EVE𝒫XEX
9 7 8 syl φE𝒫XEX
10 3 9 mpbird φE𝒫X
11 1 adantr φa𝒫XOOutMeas
12 3 adantr φa𝒫XEX
13 4 adantr φa𝒫XOE=0
14 inss2 aEE
15 14 a1i φa𝒫XaEE
16 11 2 12 13 15 omess0 φa𝒫XOaE=0
17 16 oveq1d φa𝒫XOaE+𝑒OaE=0+𝑒OaE
18 difssd a𝒫XaEa
19 elpwi a𝒫XaX
20 18 19 sstrd a𝒫XaEX
21 20 adantl φa𝒫XaEX
22 11 2 21 omexrcl φa𝒫XOaE*
23 xaddlid OaE*0+𝑒OaE=OaE
24 22 23 syl φa𝒫X0+𝑒OaE=OaE
25 17 24 eqtrd φa𝒫XOaE+𝑒OaE=OaE
26 19 adantl φa𝒫XaX
27 18 adantl φa𝒫XaEa
28 11 2 26 27 omessle φa𝒫XOaEOa
29 25 28 eqbrtrd φa𝒫XOaE+𝑒OaEOa
30 1 2 5 10 29 caragenel2d φES