Metamath Proof Explorer


Theorem cbvproddavw2

Description: Change bound variable and the set of integers in a product. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvproddavw2.1 φ A = B
cbvproddavw2.2 φ j = k C = D
Assertion cbvproddavw2 φ j A C = k B D

Proof

Step Hyp Ref Expression
1 cbvproddavw2.1 φ A = B
2 cbvproddavw2.2 φ j = k C = D
3 1 sseq1d φ A m B m
4 simpr φ j = k j = k
5 1 adantr φ j = k A = B
6 4 5 eleq12d φ j = k j A k B
7 6 2 ifbieq1d φ j = k if j A C 1 = if k B D 1
8 7 cbvmptdavw φ j if j A C 1 = k if k B D 1
9 8 seqeq3d φ seq n × j if j A C 1 = seq n × k if k B D 1
10 9 breq1d φ seq n × j if j A C 1 y seq n × k if k B D 1 y
11 10 anbi2d φ y 0 seq n × j if j A C 1 y y 0 seq n × k if k B D 1 y
12 11 exbidv φ y y 0 seq n × j if j A C 1 y y y 0 seq n × k if k B D 1 y
13 12 rexbidv φ n m y y 0 seq n × j if j A C 1 y n m y y 0 seq n × k if k B D 1 y
14 8 seqeq3d φ seq m × j if j A C 1 = seq m × k if k B D 1
15 14 breq1d φ seq m × j if j A C 1 x seq m × k if k B D 1 x
16 3 13 15 3anbi123d φ A m n m y y 0 seq n × j if j A C 1 y seq m × j if j A C 1 x B m n m y y 0 seq n × k if k B D 1 y seq m × k if k B D 1 x
17 16 rexbidv φ m A m n m y y 0 seq n × j if j A C 1 y seq m × j if j A C 1 x m B m n m y y 0 seq n × k if k B D 1 y seq m × k if k B D 1 x
18 1 f1oeq3d φ f : 1 m 1-1 onto A f : 1 m 1-1 onto B
19 2 cbvcsbdavw φ f n / j C = f n / k D
20 19 mpteq2dv φ n f n / j C = n f n / k D
21 20 seqeq3d φ seq 1 × n f n / j C = seq 1 × n f n / k D
22 21 fveq1d φ seq 1 × n f n / j C m = seq 1 × n f n / k D m
23 22 eqeq2d φ x = seq 1 × n f n / j C m x = seq 1 × n f n / k D m
24 18 23 anbi12d φ f : 1 m 1-1 onto A x = seq 1 × n f n / j C m f : 1 m 1-1 onto B x = seq 1 × n f n / k D m
25 24 exbidv φ f f : 1 m 1-1 onto A x = seq 1 × n f n / j C m f f : 1 m 1-1 onto B x = seq 1 × n f n / k D m
26 25 rexbidv φ m f f : 1 m 1-1 onto A x = seq 1 × n f n / j C m m f f : 1 m 1-1 onto B x = seq 1 × n f n / k D m
27 17 26 orbi12d φ m A m n m y y 0 seq n × j if j A C 1 y seq m × j if j A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / j C m m B m n m y y 0 seq n × k if k B D 1 y seq m × k if k B D 1 x m f f : 1 m 1-1 onto B x = seq 1 × n f n / k D m
28 27 iotabidv φ ι x | m A m n m y y 0 seq n × j if j A C 1 y seq m × j if j A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / j C m = ι x | m B m n m y y 0 seq n × k if k B D 1 y seq m × k if k B D 1 x m f f : 1 m 1-1 onto B x = seq 1 × n f n / k D m
29 df-prod j A C = ι x | m A m n m y y 0 seq n × j if j A C 1 y seq m × j if j A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / j C m
30 df-prod k B D = ι x | m B m n m y y 0 seq n × k if k B D 1 y seq m × k if k B D 1 x m f f : 1 m 1-1 onto B x = seq 1 × n f n / k D m
31 28 29 30 3eqtr4g φ j A C = k B D