Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
cdlemd2
Next ⟩
cdlemd3
Metamath Proof Explorer
Ascii
Unicode
Theorem
cdlemd2
Description:
Part of proof of Lemma D in
Crawley
p. 113.
(Contributed by
NM
, 29-May-2012)
Ref
Expression
Hypotheses
cdlemd2.l
⊢
≤
˙
=
≤
K
cdlemd2.j
⊢
∨
˙
=
join
K
cdlemd2.a
⊢
A
=
Atoms
K
cdlemd2.h
⊢
H
=
LHyp
K
cdlemd2.t
⊢
T
=
LTrn
K
W
Assertion
cdlemd2
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
F
R
=
G
R
Proof
Step
Hyp
Ref
Expression
1
cdlemd2.l
⊢
≤
˙
=
≤
K
2
cdlemd2.j
⊢
∨
˙
=
join
K
3
cdlemd2.a
⊢
A
=
Atoms
K
4
cdlemd2.h
⊢
H
=
LHyp
K
5
cdlemd2.t
⊢
T
=
LTrn
K
W
6
simp3l
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
F
P
=
G
P
7
simp11
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
K
∈
HL
∧
W
∈
H
8
simp12l
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
F
∈
T
9
simp11l
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
K
∈
HL
10
9
hllatd
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
K
∈
Lat
11
simp21l
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
P
∈
A
12
simp13
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
R
∈
A
13
eqid
⊢
Base
K
=
Base
K
14
13
2
3
hlatjcl
⊢
K
∈
HL
∧
P
∈
A
∧
R
∈
A
→
P
∨
˙
R
∈
Base
K
15
9
11
12
14
syl3anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
P
∨
˙
R
∈
Base
K
16
simp11r
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
W
∈
H
17
13
4
lhpbase
⊢
W
∈
H
→
W
∈
Base
K
18
16
17
syl
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
W
∈
Base
K
19
eqid
⊢
meet
K
=
meet
K
20
13
19
latmcl
⊢
K
∈
Lat
∧
P
∨
˙
R
∈
Base
K
∧
W
∈
Base
K
→
P
∨
˙
R
meet
K
W
∈
Base
K
21
10
15
18
20
syl3anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
P
∨
˙
R
meet
K
W
∈
Base
K
22
13
1
19
latmle2
⊢
K
∈
Lat
∧
P
∨
˙
R
∈
Base
K
∧
W
∈
Base
K
→
P
∨
˙
R
meet
K
W
≤
˙
W
23
10
15
18
22
syl3anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
P
∨
˙
R
meet
K
W
≤
˙
W
24
13
1
4
5
ltrnval1
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
P
∨
˙
R
meet
K
W
∈
Base
K
∧
P
∨
˙
R
meet
K
W
≤
˙
W
→
F
P
∨
˙
R
meet
K
W
=
P
∨
˙
R
meet
K
W
25
7
8
21
23
24
syl112anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
F
P
∨
˙
R
meet
K
W
=
P
∨
˙
R
meet
K
W
26
simp12r
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
G
∈
T
27
13
1
4
5
ltrnval1
⊢
K
∈
HL
∧
W
∈
H
∧
G
∈
T
∧
P
∨
˙
R
meet
K
W
∈
Base
K
∧
P
∨
˙
R
meet
K
W
≤
˙
W
→
G
P
∨
˙
R
meet
K
W
=
P
∨
˙
R
meet
K
W
28
7
26
21
23
27
syl112anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
G
P
∨
˙
R
meet
K
W
=
P
∨
˙
R
meet
K
W
29
25
28
eqtr4d
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
F
P
∨
˙
R
meet
K
W
=
G
P
∨
˙
R
meet
K
W
30
6
29
oveq12d
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
F
P
∨
˙
F
P
∨
˙
R
meet
K
W
=
G
P
∨
˙
G
P
∨
˙
R
meet
K
W
31
13
3
atbase
⊢
P
∈
A
→
P
∈
Base
K
32
11
31
syl
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
P
∈
Base
K
33
13
2
4
5
ltrnj
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
P
∈
Base
K
∧
P
∨
˙
R
meet
K
W
∈
Base
K
→
F
P
∨
˙
P
∨
˙
R
meet
K
W
=
F
P
∨
˙
F
P
∨
˙
R
meet
K
W
34
7
8
32
21
33
syl112anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
F
P
∨
˙
P
∨
˙
R
meet
K
W
=
F
P
∨
˙
F
P
∨
˙
R
meet
K
W
35
13
2
4
5
ltrnj
⊢
K
∈
HL
∧
W
∈
H
∧
G
∈
T
∧
P
∈
Base
K
∧
P
∨
˙
R
meet
K
W
∈
Base
K
→
G
P
∨
˙
P
∨
˙
R
meet
K
W
=
G
P
∨
˙
G
P
∨
˙
R
meet
K
W
36
7
26
32
21
35
syl112anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
G
P
∨
˙
P
∨
˙
R
meet
K
W
=
G
P
∨
˙
G
P
∨
˙
R
meet
K
W
37
30
34
36
3eqtr4d
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
F
P
∨
˙
P
∨
˙
R
meet
K
W
=
G
P
∨
˙
P
∨
˙
R
meet
K
W
38
simp3r
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
F
Q
=
G
Q
39
simp22l
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
Q
∈
A
40
13
2
3
hlatjcl
⊢
K
∈
HL
∧
Q
∈
A
∧
R
∈
A
→
Q
∨
˙
R
∈
Base
K
41
9
39
12
40
syl3anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
Q
∨
˙
R
∈
Base
K
42
13
19
latmcl
⊢
K
∈
Lat
∧
Q
∨
˙
R
∈
Base
K
∧
W
∈
Base
K
→
Q
∨
˙
R
meet
K
W
∈
Base
K
43
10
41
18
42
syl3anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
Q
∨
˙
R
meet
K
W
∈
Base
K
44
13
1
19
latmle2
⊢
K
∈
Lat
∧
Q
∨
˙
R
∈
Base
K
∧
W
∈
Base
K
→
Q
∨
˙
R
meet
K
W
≤
˙
W
45
10
41
18
44
syl3anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
Q
∨
˙
R
meet
K
W
≤
˙
W
46
13
1
4
5
ltrnval1
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
Q
∨
˙
R
meet
K
W
∈
Base
K
∧
Q
∨
˙
R
meet
K
W
≤
˙
W
→
F
Q
∨
˙
R
meet
K
W
=
Q
∨
˙
R
meet
K
W
47
7
8
43
45
46
syl112anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
F
Q
∨
˙
R
meet
K
W
=
Q
∨
˙
R
meet
K
W
48
13
1
4
5
ltrnval1
⊢
K
∈
HL
∧
W
∈
H
∧
G
∈
T
∧
Q
∨
˙
R
meet
K
W
∈
Base
K
∧
Q
∨
˙
R
meet
K
W
≤
˙
W
→
G
Q
∨
˙
R
meet
K
W
=
Q
∨
˙
R
meet
K
W
49
7
26
43
45
48
syl112anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
G
Q
∨
˙
R
meet
K
W
=
Q
∨
˙
R
meet
K
W
50
47
49
eqtr4d
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
F
Q
∨
˙
R
meet
K
W
=
G
Q
∨
˙
R
meet
K
W
51
38
50
oveq12d
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
F
Q
∨
˙
F
Q
∨
˙
R
meet
K
W
=
G
Q
∨
˙
G
Q
∨
˙
R
meet
K
W
52
13
3
atbase
⊢
Q
∈
A
→
Q
∈
Base
K
53
39
52
syl
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
Q
∈
Base
K
54
13
2
4
5
ltrnj
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
Q
∈
Base
K
∧
Q
∨
˙
R
meet
K
W
∈
Base
K
→
F
Q
∨
˙
Q
∨
˙
R
meet
K
W
=
F
Q
∨
˙
F
Q
∨
˙
R
meet
K
W
55
7
8
53
43
54
syl112anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
F
Q
∨
˙
Q
∨
˙
R
meet
K
W
=
F
Q
∨
˙
F
Q
∨
˙
R
meet
K
W
56
13
2
4
5
ltrnj
⊢
K
∈
HL
∧
W
∈
H
∧
G
∈
T
∧
Q
∈
Base
K
∧
Q
∨
˙
R
meet
K
W
∈
Base
K
→
G
Q
∨
˙
Q
∨
˙
R
meet
K
W
=
G
Q
∨
˙
G
Q
∨
˙
R
meet
K
W
57
7
26
53
43
56
syl112anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
G
Q
∨
˙
Q
∨
˙
R
meet
K
W
=
G
Q
∨
˙
G
Q
∨
˙
R
meet
K
W
58
51
55
57
3eqtr4d
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
F
Q
∨
˙
Q
∨
˙
R
meet
K
W
=
G
Q
∨
˙
Q
∨
˙
R
meet
K
W
59
37
58
oveq12d
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
F
P
∨
˙
P
∨
˙
R
meet
K
W
meet
K
F
Q
∨
˙
Q
∨
˙
R
meet
K
W
=
G
P
∨
˙
P
∨
˙
R
meet
K
W
meet
K
G
Q
∨
˙
Q
∨
˙
R
meet
K
W
60
13
2
latjcl
⊢
K
∈
Lat
∧
P
∈
Base
K
∧
P
∨
˙
R
meet
K
W
∈
Base
K
→
P
∨
˙
P
∨
˙
R
meet
K
W
∈
Base
K
61
10
32
21
60
syl3anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
P
∨
˙
P
∨
˙
R
meet
K
W
∈
Base
K
62
13
2
latjcl
⊢
K
∈
Lat
∧
Q
∈
Base
K
∧
Q
∨
˙
R
meet
K
W
∈
Base
K
→
Q
∨
˙
Q
∨
˙
R
meet
K
W
∈
Base
K
63
10
53
43
62
syl3anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
Q
∨
˙
Q
∨
˙
R
meet
K
W
∈
Base
K
64
13
19
4
5
ltrnm
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
P
∨
˙
P
∨
˙
R
meet
K
W
∈
Base
K
∧
Q
∨
˙
Q
∨
˙
R
meet
K
W
∈
Base
K
→
F
P
∨
˙
P
∨
˙
R
meet
K
W
meet
K
Q
∨
˙
Q
∨
˙
R
meet
K
W
=
F
P
∨
˙
P
∨
˙
R
meet
K
W
meet
K
F
Q
∨
˙
Q
∨
˙
R
meet
K
W
65
7
8
61
63
64
syl112anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
F
P
∨
˙
P
∨
˙
R
meet
K
W
meet
K
Q
∨
˙
Q
∨
˙
R
meet
K
W
=
F
P
∨
˙
P
∨
˙
R
meet
K
W
meet
K
F
Q
∨
˙
Q
∨
˙
R
meet
K
W
66
13
19
4
5
ltrnm
⊢
K
∈
HL
∧
W
∈
H
∧
G
∈
T
∧
P
∨
˙
P
∨
˙
R
meet
K
W
∈
Base
K
∧
Q
∨
˙
Q
∨
˙
R
meet
K
W
∈
Base
K
→
G
P
∨
˙
P
∨
˙
R
meet
K
W
meet
K
Q
∨
˙
Q
∨
˙
R
meet
K
W
=
G
P
∨
˙
P
∨
˙
R
meet
K
W
meet
K
G
Q
∨
˙
Q
∨
˙
R
meet
K
W
67
7
26
61
63
66
syl112anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
G
P
∨
˙
P
∨
˙
R
meet
K
W
meet
K
Q
∨
˙
Q
∨
˙
R
meet
K
W
=
G
P
∨
˙
P
∨
˙
R
meet
K
W
meet
K
G
Q
∨
˙
Q
∨
˙
R
meet
K
W
68
59
65
67
3eqtr4d
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
F
P
∨
˙
P
∨
˙
R
meet
K
W
meet
K
Q
∨
˙
Q
∨
˙
R
meet
K
W
=
G
P
∨
˙
P
∨
˙
R
meet
K
W
meet
K
Q
∨
˙
Q
∨
˙
R
meet
K
W
69
simp21
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
P
∈
A
∧
¬
P
≤
˙
W
70
simp22
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
Q
∈
A
∧
¬
Q
≤
˙
W
71
simp23l
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
P
≠
Q
72
simp23r
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
¬
R
≤
˙
P
∨
˙
Q
73
12
71
72
3jca
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
R
∈
A
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
74
1
2
19
3
4
cdlemd1
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
R
∈
A
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
→
R
=
P
∨
˙
P
∨
˙
R
meet
K
W
meet
K
Q
∨
˙
Q
∨
˙
R
meet
K
W
75
7
69
70
73
74
syl13anc
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
R
=
P
∨
˙
P
∨
˙
R
meet
K
W
meet
K
Q
∨
˙
Q
∨
˙
R
meet
K
W
76
75
fveq2d
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
F
R
=
F
P
∨
˙
P
∨
˙
R
meet
K
W
meet
K
Q
∨
˙
Q
∨
˙
R
meet
K
W
77
75
fveq2d
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
G
R
=
G
P
∨
˙
P
∨
˙
R
meet
K
W
meet
K
Q
∨
˙
Q
∨
˙
R
meet
K
W
78
68
76
77
3eqtr4d
⊢
K
∈
HL
∧
W
∈
H
∧
F
∈
T
∧
G
∈
T
∧
R
∈
A
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
P
≠
Q
∧
¬
R
≤
˙
P
∨
˙
Q
∧
F
P
=
G
P
∧
F
Q
=
G
Q
→
F
R
=
G
R