Metamath Proof Explorer


Theorem cdlemd2

Description: Part of proof of Lemma D in Crawley p. 113. (Contributed by NM, 29-May-2012)

Ref Expression
Hypotheses cdlemd2.l ˙=K
cdlemd2.j ˙=joinK
cdlemd2.a A=AtomsK
cdlemd2.h H=LHypK
cdlemd2.t T=LTrnKW
Assertion cdlemd2 KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQFR=GR

Proof

Step Hyp Ref Expression
1 cdlemd2.l ˙=K
2 cdlemd2.j ˙=joinK
3 cdlemd2.a A=AtomsK
4 cdlemd2.h H=LHypK
5 cdlemd2.t T=LTrnKW
6 simp3l KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQFP=GP
7 simp11 KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQKHLWH
8 simp12l KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQFT
9 simp11l KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQKHL
10 9 hllatd KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQKLat
11 simp21l KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQPA
12 simp13 KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQRA
13 eqid BaseK=BaseK
14 13 2 3 hlatjcl KHLPARAP˙RBaseK
15 9 11 12 14 syl3anc KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQP˙RBaseK
16 simp11r KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQWH
17 13 4 lhpbase WHWBaseK
18 16 17 syl KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQWBaseK
19 eqid meetK=meetK
20 13 19 latmcl KLatP˙RBaseKWBaseKP˙RmeetKWBaseK
21 10 15 18 20 syl3anc KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQP˙RmeetKWBaseK
22 13 1 19 latmle2 KLatP˙RBaseKWBaseKP˙RmeetKW˙W
23 10 15 18 22 syl3anc KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQP˙RmeetKW˙W
24 13 1 4 5 ltrnval1 KHLWHFTP˙RmeetKWBaseKP˙RmeetKW˙WFP˙RmeetKW=P˙RmeetKW
25 7 8 21 23 24 syl112anc KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQFP˙RmeetKW=P˙RmeetKW
26 simp12r KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQGT
27 13 1 4 5 ltrnval1 KHLWHGTP˙RmeetKWBaseKP˙RmeetKW˙WGP˙RmeetKW=P˙RmeetKW
28 7 26 21 23 27 syl112anc KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQGP˙RmeetKW=P˙RmeetKW
29 25 28 eqtr4d KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQFP˙RmeetKW=GP˙RmeetKW
30 6 29 oveq12d KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQFP˙FP˙RmeetKW=GP˙GP˙RmeetKW
31 13 3 atbase PAPBaseK
32 11 31 syl KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQPBaseK
33 13 2 4 5 ltrnj KHLWHFTPBaseKP˙RmeetKWBaseKFP˙P˙RmeetKW=FP˙FP˙RmeetKW
34 7 8 32 21 33 syl112anc KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQFP˙P˙RmeetKW=FP˙FP˙RmeetKW
35 13 2 4 5 ltrnj KHLWHGTPBaseKP˙RmeetKWBaseKGP˙P˙RmeetKW=GP˙GP˙RmeetKW
36 7 26 32 21 35 syl112anc KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQGP˙P˙RmeetKW=GP˙GP˙RmeetKW
37 30 34 36 3eqtr4d KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQFP˙P˙RmeetKW=GP˙P˙RmeetKW
38 simp3r KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQFQ=GQ
39 simp22l KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQQA
40 13 2 3 hlatjcl KHLQARAQ˙RBaseK
41 9 39 12 40 syl3anc KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQQ˙RBaseK
42 13 19 latmcl KLatQ˙RBaseKWBaseKQ˙RmeetKWBaseK
43 10 41 18 42 syl3anc KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQQ˙RmeetKWBaseK
44 13 1 19 latmle2 KLatQ˙RBaseKWBaseKQ˙RmeetKW˙W
45 10 41 18 44 syl3anc KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQQ˙RmeetKW˙W
46 13 1 4 5 ltrnval1 KHLWHFTQ˙RmeetKWBaseKQ˙RmeetKW˙WFQ˙RmeetKW=Q˙RmeetKW
47 7 8 43 45 46 syl112anc KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQFQ˙RmeetKW=Q˙RmeetKW
48 13 1 4 5 ltrnval1 KHLWHGTQ˙RmeetKWBaseKQ˙RmeetKW˙WGQ˙RmeetKW=Q˙RmeetKW
49 7 26 43 45 48 syl112anc KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQGQ˙RmeetKW=Q˙RmeetKW
50 47 49 eqtr4d KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQFQ˙RmeetKW=GQ˙RmeetKW
51 38 50 oveq12d KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQFQ˙FQ˙RmeetKW=GQ˙GQ˙RmeetKW
52 13 3 atbase QAQBaseK
53 39 52 syl KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQQBaseK
54 13 2 4 5 ltrnj KHLWHFTQBaseKQ˙RmeetKWBaseKFQ˙Q˙RmeetKW=FQ˙FQ˙RmeetKW
55 7 8 53 43 54 syl112anc KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQFQ˙Q˙RmeetKW=FQ˙FQ˙RmeetKW
56 13 2 4 5 ltrnj KHLWHGTQBaseKQ˙RmeetKWBaseKGQ˙Q˙RmeetKW=GQ˙GQ˙RmeetKW
57 7 26 53 43 56 syl112anc KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQGQ˙Q˙RmeetKW=GQ˙GQ˙RmeetKW
58 51 55 57 3eqtr4d KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQFQ˙Q˙RmeetKW=GQ˙Q˙RmeetKW
59 37 58 oveq12d KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQFP˙P˙RmeetKWmeetKFQ˙Q˙RmeetKW=GP˙P˙RmeetKWmeetKGQ˙Q˙RmeetKW
60 13 2 latjcl KLatPBaseKP˙RmeetKWBaseKP˙P˙RmeetKWBaseK
61 10 32 21 60 syl3anc KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQP˙P˙RmeetKWBaseK
62 13 2 latjcl KLatQBaseKQ˙RmeetKWBaseKQ˙Q˙RmeetKWBaseK
63 10 53 43 62 syl3anc KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQQ˙Q˙RmeetKWBaseK
64 13 19 4 5 ltrnm KHLWHFTP˙P˙RmeetKWBaseKQ˙Q˙RmeetKWBaseKFP˙P˙RmeetKWmeetKQ˙Q˙RmeetKW=FP˙P˙RmeetKWmeetKFQ˙Q˙RmeetKW
65 7 8 61 63 64 syl112anc KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQFP˙P˙RmeetKWmeetKQ˙Q˙RmeetKW=FP˙P˙RmeetKWmeetKFQ˙Q˙RmeetKW
66 13 19 4 5 ltrnm KHLWHGTP˙P˙RmeetKWBaseKQ˙Q˙RmeetKWBaseKGP˙P˙RmeetKWmeetKQ˙Q˙RmeetKW=GP˙P˙RmeetKWmeetKGQ˙Q˙RmeetKW
67 7 26 61 63 66 syl112anc KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQGP˙P˙RmeetKWmeetKQ˙Q˙RmeetKW=GP˙P˙RmeetKWmeetKGQ˙Q˙RmeetKW
68 59 65 67 3eqtr4d KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQFP˙P˙RmeetKWmeetKQ˙Q˙RmeetKW=GP˙P˙RmeetKWmeetKQ˙Q˙RmeetKW
69 simp21 KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQPA¬P˙W
70 simp22 KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQQA¬Q˙W
71 simp23l KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQPQ
72 simp23r KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQ¬R˙P˙Q
73 12 71 72 3jca KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQRAPQ¬R˙P˙Q
74 1 2 19 3 4 cdlemd1 KHLWHPA¬P˙WQA¬Q˙WRAPQ¬R˙P˙QR=P˙P˙RmeetKWmeetKQ˙Q˙RmeetKW
75 7 69 70 73 74 syl13anc KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQR=P˙P˙RmeetKWmeetKQ˙Q˙RmeetKW
76 75 fveq2d KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQFR=FP˙P˙RmeetKWmeetKQ˙Q˙RmeetKW
77 75 fveq2d KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQGR=GP˙P˙RmeetKWmeetKQ˙Q˙RmeetKW
78 68 76 77 3eqtr4d KHLWHFTGTRAPA¬P˙WQA¬Q˙WPQ¬R˙P˙QFP=GPFQ=GQFR=GR