Metamath Proof Explorer


Theorem cdleme0e

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 13-Jun-2012)

Ref Expression
Hypotheses cdleme0.l ˙ = K
cdleme0.j ˙ = join K
cdleme0.m ˙ = meet K
cdleme0.a A = Atoms K
cdleme0.h H = LHyp K
cdleme0.u U = P ˙ Q ˙ W
cdleme0c.3 V = P ˙ R ˙ W
Assertion cdleme0e K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q U V

Proof

Step Hyp Ref Expression
1 cdleme0.l ˙ = K
2 cdleme0.j ˙ = join K
3 cdleme0.m ˙ = meet K
4 cdleme0.a A = Atoms K
5 cdleme0.h H = LHyp K
6 cdleme0.u U = P ˙ Q ˙ W
7 cdleme0c.3 V = P ˙ R ˙ W
8 6 7 oveq12i U ˙ V = P ˙ Q ˙ W ˙ P ˙ R ˙ W
9 simp1l K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q K HL
10 hlol K HL K OL
11 9 10 syl K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q K OL
12 simp21l K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q P A
13 simp22 K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q Q A
14 eqid Base K = Base K
15 14 2 4 hlatjcl K HL P A Q A P ˙ Q Base K
16 9 12 13 15 syl3anc K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q P ˙ Q Base K
17 simp23l K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q R A
18 14 2 4 hlatjcl K HL P A R A P ˙ R Base K
19 9 12 17 18 syl3anc K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q P ˙ R Base K
20 simp1r K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q W H
21 14 5 lhpbase W H W Base K
22 20 21 syl K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q W Base K
23 14 3 latmmdir K OL P ˙ Q Base K P ˙ R Base K W Base K P ˙ Q ˙ P ˙ R ˙ W = P ˙ Q ˙ W ˙ P ˙ R ˙ W
24 11 16 19 22 23 syl13anc K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q P ˙ Q ˙ P ˙ R ˙ W = P ˙ Q ˙ W ˙ P ˙ R ˙ W
25 9 hllatd K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q K Lat
26 14 4 atbase R A R Base K
27 17 26 syl K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q R Base K
28 14 4 atbase P A P Base K
29 12 28 syl K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q P Base K
30 14 4 atbase Q A Q Base K
31 13 30 syl K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q Q Base K
32 simp3r K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q ¬ R ˙ P ˙ Q
33 14 1 2 latnlej1r K Lat R Base K P Base K Q Base K ¬ R ˙ P ˙ Q R Q
34 33 necomd K Lat R Base K P Base K Q Base K ¬ R ˙ P ˙ Q Q R
35 25 27 29 31 32 34 syl131anc K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q Q R
36 simp3 K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q P Q ¬ R ˙ P ˙ Q
37 1 2 4 hlatcon3 K HL P A Q A R A P Q ¬ R ˙ P ˙ Q ¬ P ˙ Q ˙ R
38 9 12 13 17 36 37 syl131anc K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q ¬ P ˙ Q ˙ R
39 1 2 3 4 2llnma2 K HL Q A R A P A Q R ¬ P ˙ Q ˙ R P ˙ Q ˙ P ˙ R = P
40 9 13 17 12 35 38 39 syl132anc K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q P ˙ Q ˙ P ˙ R = P
41 40 oveq1d K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q P ˙ Q ˙ P ˙ R ˙ W = P ˙ W
42 24 41 eqtr3d K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q P ˙ Q ˙ W ˙ P ˙ R ˙ W = P ˙ W
43 8 42 eqtrid K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q U ˙ V = P ˙ W
44 simp1 K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q K HL W H
45 simp21 K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q P A ¬ P ˙ W
46 eqid 0. K = 0. K
47 1 3 46 4 5 lhpmat K HL W H P A ¬ P ˙ W P ˙ W = 0. K
48 44 45 47 syl2anc K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q P ˙ W = 0. K
49 43 48 eqtrd K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q U ˙ V = 0. K
50 hlatl K HL K AtLat
51 9 50 syl K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q K AtLat
52 simp3l K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q P Q
53 1 2 3 4 5 6 lhpat2 K HL W H P A ¬ P ˙ W Q A P Q U A
54 44 45 13 52 53 syl112anc K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q U A
55 14 1 2 latnlej1l K Lat R Base K P Base K Q Base K ¬ R ˙ P ˙ Q R P
56 55 necomd K Lat R Base K P Base K Q Base K ¬ R ˙ P ˙ Q P R
57 25 27 29 31 32 56 syl131anc K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q P R
58 1 2 3 4 5 7 lhpat2 K HL W H P A ¬ P ˙ W R A P R V A
59 44 45 17 57 58 syl112anc K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q V A
60 3 46 4 atnem0 K AtLat U A V A U V U ˙ V = 0. K
61 51 54 59 60 syl3anc K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q U V U ˙ V = 0. K
62 49 61 mpbird K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q U V