Metamath Proof Explorer


Theorem cdleme10

Description: Part of proof of Lemma E in Crawley p. 113, 2nd paragraph on p. 114. D represents s_2. In their notation, we prove s \/ s_2 = s \/ r. (Contributed by NM, 9-Jun-2012)

Ref Expression
Hypotheses cdleme10.l ˙=K
cdleme10.j ˙=joinK
cdleme10.m ˙=meetK
cdleme10.a A=AtomsK
cdleme10.h H=LHypK
cdleme10.d D=R˙S˙W
Assertion cdleme10 KHLWHRASA¬S˙WS˙D=S˙R

Proof

Step Hyp Ref Expression
1 cdleme10.l ˙=K
2 cdleme10.j ˙=joinK
3 cdleme10.m ˙=meetK
4 cdleme10.a A=AtomsK
5 cdleme10.h H=LHypK
6 cdleme10.d D=R˙S˙W
7 6 oveq2i S˙D=S˙R˙S˙W
8 simp1l KHLWHRASA¬S˙WKHL
9 simp3l KHLWHRASA¬S˙WSA
10 simp2 KHLWHRASA¬S˙WRA
11 eqid BaseK=BaseK
12 11 2 4 hlatjcl KHLRASAR˙SBaseK
13 8 10 9 12 syl3anc KHLWHRASA¬S˙WR˙SBaseK
14 simp1r KHLWHRASA¬S˙WWH
15 11 5 lhpbase WHWBaseK
16 14 15 syl KHLWHRASA¬S˙WWBaseK
17 8 hllatd KHLWHRASA¬S˙WKLat
18 11 4 atbase RARBaseK
19 18 3ad2ant2 KHLWHRASA¬S˙WRBaseK
20 11 4 atbase SASBaseK
21 9 20 syl KHLWHRASA¬S˙WSBaseK
22 11 1 2 latlej2 KLatRBaseKSBaseKS˙R˙S
23 17 19 21 22 syl3anc KHLWHRASA¬S˙WS˙R˙S
24 11 1 2 3 4 atmod3i1 KHLSAR˙SBaseKWBaseKS˙R˙SS˙R˙S˙W=R˙S˙S˙W
25 8 9 13 16 23 24 syl131anc KHLWHRASA¬S˙WS˙R˙S˙W=R˙S˙S˙W
26 11 2 latjcom KLatRBaseKSBaseKR˙S=S˙R
27 17 19 21 26 syl3anc KHLWHRASA¬S˙WR˙S=S˙R
28 eqid 1.K=1.K
29 1 2 28 4 5 lhpjat2 KHLWHSA¬S˙WS˙W=1.K
30 29 3adant2 KHLWHRASA¬S˙WS˙W=1.K
31 27 30 oveq12d KHLWHRASA¬S˙WR˙S˙S˙W=S˙R˙1.K
32 hlol KHLKOL
33 8 32 syl KHLWHRASA¬S˙WKOL
34 11 2 latjcl KLatSBaseKRBaseKS˙RBaseK
35 17 21 19 34 syl3anc KHLWHRASA¬S˙WS˙RBaseK
36 11 3 28 olm11 KOLS˙RBaseKS˙R˙1.K=S˙R
37 33 35 36 syl2anc KHLWHRASA¬S˙WS˙R˙1.K=S˙R
38 25 31 37 3eqtrd KHLWHRASA¬S˙WS˙R˙S˙W=S˙R
39 7 38 eqtrid KHLWHRASA¬S˙WS˙D=S˙R